MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsvscaval Structured version   Visualization version   GIF version

Theorem pwsvscaval 16760
Description: Scalar multiplication of a single coordinate in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsvscaval.y 𝑌 = (𝑅s 𝐼)
pwsvscaval.b 𝐵 = (Base‘𝑌)
pwsvscaval.s · = ( ·𝑠𝑅)
pwsvscaval.t = ( ·𝑠𝑌)
pwsvscaval.f 𝐹 = (Scalar‘𝑅)
pwsvscaval.k 𝐾 = (Base‘𝐹)
pwsvscaval.r (𝜑𝑅𝑉)
pwsvscaval.i (𝜑𝐼𝑊)
pwsvscaval.a (𝜑𝐴𝐾)
pwsvscaval.x (𝜑𝑋𝐵)
pwsvscaval.j (𝜑𝐽𝐼)
Assertion
Ref Expression
pwsvscaval (𝜑 → ((𝐴 𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))

Proof of Theorem pwsvscaval
StepHypRef Expression
1 pwsvscaval.y . . . 4 𝑌 = (𝑅s 𝐼)
2 pwsvscaval.b . . . 4 𝐵 = (Base‘𝑌)
3 pwsvscaval.s . . . 4 · = ( ·𝑠𝑅)
4 pwsvscaval.t . . . 4 = ( ·𝑠𝑌)
5 pwsvscaval.f . . . 4 𝐹 = (Scalar‘𝑅)
6 pwsvscaval.k . . . 4 𝐾 = (Base‘𝐹)
7 pwsvscaval.r . . . 4 (𝜑𝑅𝑉)
8 pwsvscaval.i . . . 4 (𝜑𝐼𝑊)
9 pwsvscaval.a . . . 4 (𝜑𝐴𝐾)
10 pwsvscaval.x . . . 4 (𝜑𝑋𝐵)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pwsvscafval 16759 . . 3 (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋))
1211fveq1d 6647 . 2 (𝜑 → ((𝐴 𝑋)‘𝐽) = (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽))
13 pwsvscaval.j . . 3 (𝜑𝐽𝐼)
14 eqid 2798 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
151, 14, 2, 7, 8, 10pwselbas 16754 . . . . 5 (𝜑𝑋:𝐼⟶(Base‘𝑅))
1615ffnd 6488 . . . 4 (𝜑𝑋 Fn 𝐼)
17 eqidd 2799 . . . 4 ((𝜑𝐽𝐼) → (𝑋𝐽) = (𝑋𝐽))
188, 9, 16, 17ofc1 7412 . . 3 ((𝜑𝐽𝐼) → (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))
1913, 18mpdan 686 . 2 (𝜑 → (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))
2012, 19eqtrd 2833 1 (𝜑 → ((𝐴 𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {csn 4525   × cxp 5517  cfv 6324  (class class class)co 7135  f cof 7387  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  s cpws 16712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-prds 16713  df-pws 16715
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator