MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsvscaval Structured version   Visualization version   GIF version

Theorem pwsvscaval 17417
Description: Scalar multiplication of a single coordinate in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsvscaval.y 𝑌 = (𝑅s 𝐼)
pwsvscaval.b 𝐵 = (Base‘𝑌)
pwsvscaval.s · = ( ·𝑠𝑅)
pwsvscaval.t = ( ·𝑠𝑌)
pwsvscaval.f 𝐹 = (Scalar‘𝑅)
pwsvscaval.k 𝐾 = (Base‘𝐹)
pwsvscaval.r (𝜑𝑅𝑉)
pwsvscaval.i (𝜑𝐼𝑊)
pwsvscaval.a (𝜑𝐴𝐾)
pwsvscaval.x (𝜑𝑋𝐵)
pwsvscaval.j (𝜑𝐽𝐼)
Assertion
Ref Expression
pwsvscaval (𝜑 → ((𝐴 𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))

Proof of Theorem pwsvscaval
StepHypRef Expression
1 pwsvscaval.y . . . 4 𝑌 = (𝑅s 𝐼)
2 pwsvscaval.b . . . 4 𝐵 = (Base‘𝑌)
3 pwsvscaval.s . . . 4 · = ( ·𝑠𝑅)
4 pwsvscaval.t . . . 4 = ( ·𝑠𝑌)
5 pwsvscaval.f . . . 4 𝐹 = (Scalar‘𝑅)
6 pwsvscaval.k . . . 4 𝐾 = (Base‘𝐹)
7 pwsvscaval.r . . . 4 (𝜑𝑅𝑉)
8 pwsvscaval.i . . . 4 (𝜑𝐼𝑊)
9 pwsvscaval.a . . . 4 (𝜑𝐴𝐾)
10 pwsvscaval.x . . . 4 (𝜑𝑋𝐵)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pwsvscafval 17416 . . 3 (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋))
1211fveq1d 6828 . 2 (𝜑 → ((𝐴 𝑋)‘𝐽) = (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽))
13 pwsvscaval.j . . 3 (𝜑𝐽𝐼)
14 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
151, 14, 2, 7, 8, 10pwselbas 17411 . . . . 5 (𝜑𝑋:𝐼⟶(Base‘𝑅))
1615ffnd 6657 . . . 4 (𝜑𝑋 Fn 𝐼)
17 eqidd 2730 . . . 4 ((𝜑𝐽𝐼) → (𝑋𝐽) = (𝑋𝐽))
188, 9, 16, 17ofc1 7645 . . 3 ((𝜑𝐽𝐼) → (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))
1913, 18mpdan 687 . 2 (𝜑 → (((𝐼 × {𝐴}) ∘f · 𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))
2012, 19eqtrd 2764 1 (𝜑 → ((𝐴 𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4579   × cxp 5621  cfv 6486  (class class class)co 7353  f cof 7615  Basecbs 17138  Scalarcsca 17182   ·𝑠 cvsca 17183  s cpws 17368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-prds 17369  df-pws 17371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator