![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1sclmulfv | Structured version Visualization version GIF version |
Description: A single coefficient of a polynomial multiplied on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
Ref | Expression |
---|---|
coe1sclmul.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1sclmul.b | ⊢ 𝐵 = (Base‘𝑃) |
coe1sclmul.k | ⊢ 𝐾 = (Base‘𝑅) |
coe1sclmul.a | ⊢ 𝐴 = (algSc‘𝑃) |
coe1sclmul.t | ⊢ ∙ = (.r‘𝑃) |
coe1sclmul.u | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
coe1sclmulfv | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → ((coe1‘((𝐴‘𝑋) ∙ 𝑌))‘ 0 ) = (𝑋 · ((coe1‘𝑌)‘ 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1sclmul.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | coe1sclmul.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
3 | coe1sclmul.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑅) | |
4 | coe1sclmul.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑃) | |
5 | coe1sclmul.t | . . . . . 6 ⊢ ∙ = (.r‘𝑃) | |
6 | coe1sclmul.u | . . . . . 6 ⊢ · = (.r‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | coe1sclmul 22226 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))) |
8 | 7 | 3expb 1117 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))) |
9 | 8 | 3adant3 1129 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))) |
10 | 9 | fveq1d 6898 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → ((coe1‘((𝐴‘𝑋) ∙ 𝑌))‘ 0 ) = (((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))‘ 0 )) |
11 | simp3 1135 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → 0 ∈ ℕ0) | |
12 | nn0ex 12511 | . . . . 5 ⊢ ℕ0 ∈ V | |
13 | 12 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → ℕ0 ∈ V) |
14 | simp2l 1196 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → 𝑋 ∈ 𝐾) | |
15 | simp2r 1197 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → 𝑌 ∈ 𝐵) | |
16 | eqid 2725 | . . . . . 6 ⊢ (coe1‘𝑌) = (coe1‘𝑌) | |
17 | eqid 2725 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
18 | 16, 2, 1, 17 | coe1f 22154 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → (coe1‘𝑌):ℕ0⟶(Base‘𝑅)) |
19 | ffn 6723 | . . . . 5 ⊢ ((coe1‘𝑌):ℕ0⟶(Base‘𝑅) → (coe1‘𝑌) Fn ℕ0) | |
20 | 15, 18, 19 | 3syl 18 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → (coe1‘𝑌) Fn ℕ0) |
21 | eqidd 2726 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) ∧ 0 ∈ ℕ0) → ((coe1‘𝑌)‘ 0 ) = ((coe1‘𝑌)‘ 0 )) | |
22 | 13, 14, 20, 21 | ofc1 7712 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) ∧ 0 ∈ ℕ0) → (((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))‘ 0 ) = (𝑋 · ((coe1‘𝑌)‘ 0 ))) |
23 | 11, 22 | mpdan 685 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → (((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))‘ 0 ) = (𝑋 · ((coe1‘𝑌)‘ 0 ))) |
24 | 10, 23 | eqtrd 2765 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → ((coe1‘((𝐴‘𝑋) ∙ 𝑌))‘ 0 ) = (𝑋 · ((coe1‘𝑌)‘ 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3461 {csn 4630 × cxp 5676 Fn wfn 6544 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ∘f cof 7683 ℕ0cn0 12505 Basecbs 17183 .rcmulr 17237 Ringcrg 20185 algSccascl 21803 Poly1cpl1 22119 coe1cco1 22120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-ofr 7686 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-sup 9467 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-fzo 13663 df-seq 14003 df-hash 14326 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-hom 17260 df-cco 17261 df-0g 17426 df-gsum 17427 df-prds 17432 df-pws 17434 df-mre 17569 df-mrc 17570 df-acs 17572 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18743 df-submnd 18744 df-grp 18901 df-minusg 18902 df-sbg 18903 df-mulg 19032 df-subg 19086 df-ghm 19176 df-cntz 19280 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-subrng 20495 df-subrg 20520 df-lmod 20757 df-lss 20828 df-ascl 21806 df-psr 21859 df-mvr 21860 df-mpl 21861 df-opsr 21863 df-psr1 22122 df-vr1 22123 df-ply1 22124 df-coe1 22125 |
This theorem is referenced by: deg1mul3le 26097 hbtlem2 42690 coe1sclmulval 47639 |
Copyright terms: Public domain | W3C validator |