| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1sclmulfv | Structured version Visualization version GIF version | ||
| Description: A single coefficient of a polynomial multiplied on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| Ref | Expression |
|---|---|
| coe1sclmul.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| coe1sclmul.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1sclmul.k | ⊢ 𝐾 = (Base‘𝑅) |
| coe1sclmul.a | ⊢ 𝐴 = (algSc‘𝑃) |
| coe1sclmul.t | ⊢ ∙ = (.r‘𝑃) |
| coe1sclmul.u | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| coe1sclmulfv | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → ((coe1‘((𝐴‘𝑋) ∙ 𝑌))‘ 0 ) = (𝑋 · ((coe1‘𝑌)‘ 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1sclmul.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | coe1sclmul.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
| 3 | coe1sclmul.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑅) | |
| 4 | coe1sclmul.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑃) | |
| 5 | coe1sclmul.t | . . . . . 6 ⊢ ∙ = (.r‘𝑃) | |
| 6 | coe1sclmul.u | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | coe1sclmul 22252 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))) |
| 8 | 7 | 3expb 1120 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))) |
| 9 | 8 | 3adant3 1132 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))) |
| 10 | 9 | fveq1d 6889 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → ((coe1‘((𝐴‘𝑋) ∙ 𝑌))‘ 0 ) = (((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))‘ 0 )) |
| 11 | simp3 1138 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → 0 ∈ ℕ0) | |
| 12 | nn0ex 12516 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → ℕ0 ∈ V) |
| 14 | simp2l 1199 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → 𝑋 ∈ 𝐾) | |
| 15 | simp2r 1200 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → 𝑌 ∈ 𝐵) | |
| 16 | eqid 2734 | . . . . . 6 ⊢ (coe1‘𝑌) = (coe1‘𝑌) | |
| 17 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 18 | 16, 2, 1, 17 | coe1f 22180 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → (coe1‘𝑌):ℕ0⟶(Base‘𝑅)) |
| 19 | ffn 6717 | . . . . 5 ⊢ ((coe1‘𝑌):ℕ0⟶(Base‘𝑅) → (coe1‘𝑌) Fn ℕ0) | |
| 20 | 15, 18, 19 | 3syl 18 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → (coe1‘𝑌) Fn ℕ0) |
| 21 | eqidd 2735 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) ∧ 0 ∈ ℕ0) → ((coe1‘𝑌)‘ 0 ) = ((coe1‘𝑌)‘ 0 )) | |
| 22 | 13, 14, 20, 21 | ofc1 7708 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) ∧ 0 ∈ ℕ0) → (((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))‘ 0 ) = (𝑋 · ((coe1‘𝑌)‘ 0 ))) |
| 23 | 11, 22 | mpdan 687 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → (((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))‘ 0 ) = (𝑋 · ((coe1‘𝑌)‘ 0 ))) |
| 24 | 10, 23 | eqtrd 2769 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → ((coe1‘((𝐴‘𝑋) ∙ 𝑌))‘ 0 ) = (𝑋 · ((coe1‘𝑌)‘ 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3464 {csn 4608 × cxp 5665 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ∘f cof 7678 ℕ0cn0 12510 Basecbs 17230 .rcmulr 17278 Ringcrg 20203 algSccascl 21839 Poly1cpl1 22145 coe1cco1 22146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-ofr 7681 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-er 8728 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-fz 13531 df-fzo 13678 df-seq 14026 df-hash 14353 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-hom 17301 df-cco 17302 df-0g 17462 df-gsum 17463 df-prds 17468 df-pws 17470 df-mre 17605 df-mrc 17606 df-acs 17608 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-mhm 18770 df-submnd 18771 df-grp 18928 df-minusg 18929 df-sbg 18930 df-mulg 19060 df-subg 19115 df-ghm 19205 df-cntz 19309 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-ring 20205 df-subrng 20519 df-subrg 20543 df-lmod 20833 df-lss 20903 df-ascl 21842 df-psr 21896 df-mvr 21897 df-mpl 21898 df-opsr 21900 df-psr1 22148 df-vr1 22149 df-ply1 22150 df-coe1 22151 |
| This theorem is referenced by: deg1mul3le 26111 rtelextdg2lem 33708 hbtlem2 43081 coe1sclmulval 48248 |
| Copyright terms: Public domain | W3C validator |