MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1sclmulfv Structured version   Visualization version   GIF version

Theorem coe1sclmulfv 22169
Description: A single coefficient of a polynomial multiplied on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
coe1sclmul.p 𝑃 = (Poly1𝑅)
coe1sclmul.b 𝐵 = (Base‘𝑃)
coe1sclmul.k 𝐾 = (Base‘𝑅)
coe1sclmul.a 𝐴 = (algSc‘𝑃)
coe1sclmul.t = (.r𝑃)
coe1sclmul.u · = (.r𝑅)
Assertion
Ref Expression
coe1sclmulfv ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → ((coe1‘((𝐴𝑋) 𝑌))‘ 0 ) = (𝑋 · ((coe1𝑌)‘ 0 )))

Proof of Theorem coe1sclmulfv
StepHypRef Expression
1 coe1sclmul.p . . . . . 6 𝑃 = (Poly1𝑅)
2 coe1sclmul.b . . . . . 6 𝐵 = (Base‘𝑃)
3 coe1sclmul.k . . . . . 6 𝐾 = (Base‘𝑅)
4 coe1sclmul.a . . . . . 6 𝐴 = (algSc‘𝑃)
5 coe1sclmul.t . . . . . 6 = (.r𝑃)
6 coe1sclmul.u . . . . . 6 · = (.r𝑅)
71, 2, 3, 4, 5, 6coe1sclmul 22168 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐾𝑌𝐵) → (coe1‘((𝐴𝑋) 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1𝑌)))
873expb 1120 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵)) → (coe1‘((𝐴𝑋) 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1𝑌)))
983adant3 1132 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → (coe1‘((𝐴𝑋) 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1𝑌)))
109fveq1d 6860 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → ((coe1‘((𝐴𝑋) 𝑌))‘ 0 ) = (((ℕ0 × {𝑋}) ∘f · (coe1𝑌))‘ 0 ))
11 simp3 1138 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → 0 ∈ ℕ0)
12 nn0ex 12448 . . . . 5 0 ∈ V
1312a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → ℕ0 ∈ V)
14 simp2l 1200 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → 𝑋𝐾)
15 simp2r 1201 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → 𝑌𝐵)
16 eqid 2729 . . . . . 6 (coe1𝑌) = (coe1𝑌)
17 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
1816, 2, 1, 17coe1f 22096 . . . . 5 (𝑌𝐵 → (coe1𝑌):ℕ0⟶(Base‘𝑅))
19 ffn 6688 . . . . 5 ((coe1𝑌):ℕ0⟶(Base‘𝑅) → (coe1𝑌) Fn ℕ0)
2015, 18, 193syl 18 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → (coe1𝑌) Fn ℕ0)
21 eqidd 2730 . . . 4 (((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) ∧ 0 ∈ ℕ0) → ((coe1𝑌)‘ 0 ) = ((coe1𝑌)‘ 0 ))
2213, 14, 20, 21ofc1 7681 . . 3 (((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) ∧ 0 ∈ ℕ0) → (((ℕ0 × {𝑋}) ∘f · (coe1𝑌))‘ 0 ) = (𝑋 · ((coe1𝑌)‘ 0 )))
2311, 22mpdan 687 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → (((ℕ0 × {𝑋}) ∘f · (coe1𝑌))‘ 0 ) = (𝑋 · ((coe1𝑌)‘ 0 )))
2410, 23eqtrd 2764 1 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → ((coe1‘((𝐴𝑋) 𝑌))‘ 0 ) = (𝑋 · ((coe1𝑌)‘ 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589   × cxp 5636   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  0cn0 12442  Basecbs 17179  .rcmulr 17221  Ringcrg 20142  algSccascl 21761  Poly1cpl1 22061  coe1cco1 22062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067
This theorem is referenced by:  deg1mul3le  26022  rtelextdg2lem  33716  hbtlem2  43113  coe1sclmulval  48374
  Copyright terms: Public domain W3C validator