MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1sclmulfv Structured version   Visualization version   GIF version

Theorem coe1sclmulfv 21454
Description: A single coefficient of a polynomial multiplied on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
coe1sclmul.p 𝑃 = (Poly1𝑅)
coe1sclmul.b 𝐵 = (Base‘𝑃)
coe1sclmul.k 𝐾 = (Base‘𝑅)
coe1sclmul.a 𝐴 = (algSc‘𝑃)
coe1sclmul.t = (.r𝑃)
coe1sclmul.u · = (.r𝑅)
Assertion
Ref Expression
coe1sclmulfv ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → ((coe1‘((𝐴𝑋) 𝑌))‘ 0 ) = (𝑋 · ((coe1𝑌)‘ 0 )))

Proof of Theorem coe1sclmulfv
StepHypRef Expression
1 coe1sclmul.p . . . . . 6 𝑃 = (Poly1𝑅)
2 coe1sclmul.b . . . . . 6 𝐵 = (Base‘𝑃)
3 coe1sclmul.k . . . . . 6 𝐾 = (Base‘𝑅)
4 coe1sclmul.a . . . . . 6 𝐴 = (algSc‘𝑃)
5 coe1sclmul.t . . . . . 6 = (.r𝑃)
6 coe1sclmul.u . . . . . 6 · = (.r𝑅)
71, 2, 3, 4, 5, 6coe1sclmul 21453 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐾𝑌𝐵) → (coe1‘((𝐴𝑋) 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1𝑌)))
873expb 1119 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵)) → (coe1‘((𝐴𝑋) 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1𝑌)))
983adant3 1131 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → (coe1‘((𝐴𝑋) 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1𝑌)))
109fveq1d 6776 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → ((coe1‘((𝐴𝑋) 𝑌))‘ 0 ) = (((ℕ0 × {𝑋}) ∘f · (coe1𝑌))‘ 0 ))
11 simp3 1137 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → 0 ∈ ℕ0)
12 nn0ex 12239 . . . . 5 0 ∈ V
1312a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → ℕ0 ∈ V)
14 simp2l 1198 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → 𝑋𝐾)
15 simp2r 1199 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → 𝑌𝐵)
16 eqid 2738 . . . . . 6 (coe1𝑌) = (coe1𝑌)
17 eqid 2738 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
1816, 2, 1, 17coe1f 21382 . . . . 5 (𝑌𝐵 → (coe1𝑌):ℕ0⟶(Base‘𝑅))
19 ffn 6600 . . . . 5 ((coe1𝑌):ℕ0⟶(Base‘𝑅) → (coe1𝑌) Fn ℕ0)
2015, 18, 193syl 18 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → (coe1𝑌) Fn ℕ0)
21 eqidd 2739 . . . 4 (((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) ∧ 0 ∈ ℕ0) → ((coe1𝑌)‘ 0 ) = ((coe1𝑌)‘ 0 ))
2213, 14, 20, 21ofc1 7559 . . 3 (((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) ∧ 0 ∈ ℕ0) → (((ℕ0 × {𝑋}) ∘f · (coe1𝑌))‘ 0 ) = (𝑋 · ((coe1𝑌)‘ 0 )))
2311, 22mpdan 684 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → (((ℕ0 × {𝑋}) ∘f · (coe1𝑌))‘ 0 ) = (𝑋 · ((coe1𝑌)‘ 0 )))
2410, 23eqtrd 2778 1 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ 0 ∈ ℕ0) → ((coe1‘((𝐴𝑋) 𝑌))‘ 0 ) = (𝑋 · ((coe1𝑌)‘ 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  0cn0 12233  Basecbs 16912  .rcmulr 16963  Ringcrg 19783  algSccascl 21059  Poly1cpl1 21348  coe1cco1 21349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-tset 16981  df-ple 16982  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-lmod 20125  df-lss 20194  df-ascl 21062  df-psr 21112  df-mvr 21113  df-mpl 21114  df-opsr 21116  df-psr1 21351  df-vr1 21352  df-ply1 21353  df-coe1 21354
This theorem is referenced by:  deg1mul3le  25281  hbtlem2  40949  coe1sclmulval  45726
  Copyright terms: Public domain W3C validator