Proof of Theorem uc1pmon1p
Step | Hyp | Ref
| Expression |
1 | | uc1pmon1p.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
2 | 1 | ply1ring 21329 |
. . . 4
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
3 | 2 | adantr 480 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → 𝑃 ∈ Ring) |
4 | | uc1pmon1p.a |
. . . . . 6
⊢ 𝐴 = (algSc‘𝑃) |
5 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
6 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑃) |
7 | 1, 4, 5, 6 | ply1sclf 21366 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝐴:(Base‘𝑅)⟶(Base‘𝑃)) |
8 | 7 | adantr 480 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → 𝐴:(Base‘𝑅)⟶(Base‘𝑃)) |
9 | | uc1pmon1p.d |
. . . . . 6
⊢ 𝐷 = ( deg1
‘𝑅) |
10 | | eqid 2738 |
. . . . . 6
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
11 | | uc1pmon1p.c |
. . . . . 6
⊢ 𝐶 =
(Unic1p‘𝑅) |
12 | 9, 10, 11 | uc1pldg 25218 |
. . . . 5
⊢ (𝑋 ∈ 𝐶 → ((coe1‘𝑋)‘(𝐷‘𝑋)) ∈ (Unit‘𝑅)) |
13 | | uc1pmon1p.i |
. . . . . 6
⊢ 𝐼 = (invr‘𝑅) |
14 | 10, 13, 5 | ringinvcl 19833 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝑋)‘(𝐷‘𝑋)) ∈ (Unit‘𝑅)) → (𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋))) ∈ (Base‘𝑅)) |
15 | 12, 14 | sylan2 592 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋))) ∈ (Base‘𝑅)) |
16 | 8, 15 | ffvelrnd 6944 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) ∈ (Base‘𝑃)) |
17 | 1, 6, 11 | uc1pcl 25213 |
. . . 4
⊢ (𝑋 ∈ 𝐶 → 𝑋 ∈ (Base‘𝑃)) |
18 | 17 | adantl 481 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ (Base‘𝑃)) |
19 | | uc1pmon1p.t |
. . . 4
⊢ · =
(.r‘𝑃) |
20 | 6, 19 | ringcl 19715 |
. . 3
⊢ ((𝑃 ∈ Ring ∧ (𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) ∈ (Base‘𝑃) ∧ 𝑋 ∈ (Base‘𝑃)) → ((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ∈ (Base‘𝑃)) |
21 | 3, 16, 18, 20 | syl3anc 1369 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → ((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ∈ (Base‘𝑃)) |
22 | | simpl 482 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → 𝑅 ∈ Ring) |
23 | | eqid 2738 |
. . . . . . . 8
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) |
24 | 23, 10 | unitrrg 20477 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(Unit‘𝑅) ⊆
(RLReg‘𝑅)) |
25 | 24 | adantr 480 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (Unit‘𝑅) ⊆ (RLReg‘𝑅)) |
26 | 10, 13 | unitinvcl 19831 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝑋)‘(𝐷‘𝑋)) ∈ (Unit‘𝑅)) → (𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋))) ∈ (Unit‘𝑅)) |
27 | 12, 26 | sylan2 592 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋))) ∈ (Unit‘𝑅)) |
28 | 25, 27 | sseldd 3918 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋))) ∈ (RLReg‘𝑅)) |
29 | 9, 1, 23, 6, 19, 4 | deg1mul3 25185 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋))) ∈ (RLReg‘𝑅) ∧ 𝑋 ∈ (Base‘𝑃)) → (𝐷‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋)) = (𝐷‘𝑋)) |
30 | 22, 28, 18, 29 | syl3anc 1369 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (𝐷‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋)) = (𝐷‘𝑋)) |
31 | 9, 11 | uc1pdeg 25217 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (𝐷‘𝑋) ∈
ℕ0) |
32 | 30, 31 | eqeltrd 2839 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (𝐷‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋)) ∈
ℕ0) |
33 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝑃) = (0g‘𝑃) |
34 | 9, 1, 33, 6 | deg1nn0clb 25160 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ ((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ∈ (Base‘𝑃)) → (((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ≠ (0g‘𝑃) ↔ (𝐷‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋)) ∈
ℕ0)) |
35 | 21, 34 | syldan 590 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ≠ (0g‘𝑃) ↔ (𝐷‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋)) ∈
ℕ0)) |
36 | 32, 35 | mpbird 256 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → ((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ≠ (0g‘𝑃)) |
37 | 30 | fveq2d 6760 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → ((coe1‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋))‘(𝐷‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋))) = ((coe1‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋))‘(𝐷‘𝑋))) |
38 | | eqid 2738 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
39 | 1, 6, 5, 4, 19, 38 | coe1sclmul 21363 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋))) ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑃)) → (coe1‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋)) = ((ℕ0 × {(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))}) ∘f
(.r‘𝑅)(coe1‘𝑋))) |
40 | 22, 15, 18, 39 | syl3anc 1369 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (coe1‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋)) = ((ℕ0 × {(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))}) ∘f
(.r‘𝑅)(coe1‘𝑋))) |
41 | 40 | fveq1d 6758 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → ((coe1‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋))‘(𝐷‘𝑋)) = (((ℕ0 × {(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))}) ∘f
(.r‘𝑅)(coe1‘𝑋))‘(𝐷‘𝑋))) |
42 | | nn0ex 12169 |
. . . . . . 7
⊢
ℕ0 ∈ V |
43 | 42 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → ℕ0 ∈
V) |
44 | | fvexd 6771 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋))) ∈ V) |
45 | | eqid 2738 |
. . . . . . . 8
⊢
(coe1‘𝑋) = (coe1‘𝑋) |
46 | 45, 6, 1, 5 | coe1f 21292 |
. . . . . . 7
⊢ (𝑋 ∈ (Base‘𝑃) →
(coe1‘𝑋):ℕ0⟶(Base‘𝑅)) |
47 | | ffn 6584 |
. . . . . . 7
⊢
((coe1‘𝑋):ℕ0⟶(Base‘𝑅) →
(coe1‘𝑋) Fn
ℕ0) |
48 | 18, 46, 47 | 3syl 18 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (coe1‘𝑋) Fn
ℕ0) |
49 | | eqidd 2739 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) ∧ (𝐷‘𝑋) ∈ ℕ0) →
((coe1‘𝑋)‘(𝐷‘𝑋)) = ((coe1‘𝑋)‘(𝐷‘𝑋))) |
50 | 43, 44, 48, 49 | ofc1 7537 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) ∧ (𝐷‘𝑋) ∈ ℕ0) →
(((ℕ0 × {(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))}) ∘f
(.r‘𝑅)(coe1‘𝑋))‘(𝐷‘𝑋)) = ((𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))(.r‘𝑅)((coe1‘𝑋)‘(𝐷‘𝑋)))) |
51 | 31, 50 | mpdan 683 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (((ℕ0 ×
{(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))}) ∘f
(.r‘𝑅)(coe1‘𝑋))‘(𝐷‘𝑋)) = ((𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))(.r‘𝑅)((coe1‘𝑋)‘(𝐷‘𝑋)))) |
52 | | eqid 2738 |
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) |
53 | 10, 13, 38, 52 | unitlinv 19834 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝑋)‘(𝐷‘𝑋)) ∈ (Unit‘𝑅)) → ((𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))(.r‘𝑅)((coe1‘𝑋)‘(𝐷‘𝑋))) = (1r‘𝑅)) |
54 | 12, 53 | sylan2 592 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → ((𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))(.r‘𝑅)((coe1‘𝑋)‘(𝐷‘𝑋))) = (1r‘𝑅)) |
55 | 51, 54 | eqtrd 2778 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → (((ℕ0 ×
{(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))}) ∘f
(.r‘𝑅)(coe1‘𝑋))‘(𝐷‘𝑋)) = (1r‘𝑅)) |
56 | 37, 41, 55 | 3eqtrd 2782 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → ((coe1‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋))‘(𝐷‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋))) = (1r‘𝑅)) |
57 | | uc1pmon1p.m |
. . 3
⊢ 𝑀 =
(Monic1p‘𝑅) |
58 | 1, 6, 33, 9, 57, 52 | ismon1p 25212 |
. 2
⊢ (((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ∈ 𝑀 ↔ (((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ∈ (Base‘𝑃) ∧ ((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ≠ (0g‘𝑃) ∧
((coe1‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋))‘(𝐷‘((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋))) = (1r‘𝑅))) |
59 | 21, 36, 56, 58 | syl3anbrc 1341 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → ((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ∈ 𝑀) |