MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uc1pmon1p Structured version   Visualization version   GIF version

Theorem uc1pmon1p 26090
Description: Make a unitic polynomial monic by multiplying a factor to normalize the leading coefficient. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
uc1pmon1p.c 𝐶 = (Unic1p𝑅)
uc1pmon1p.m 𝑀 = (Monic1p𝑅)
uc1pmon1p.p 𝑃 = (Poly1𝑅)
uc1pmon1p.t · = (.r𝑃)
uc1pmon1p.a 𝐴 = (algSc‘𝑃)
uc1pmon1p.d 𝐷 = (deg1𝑅)
uc1pmon1p.i 𝐼 = (invr𝑅)
Assertion
Ref Expression
uc1pmon1p ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ∈ 𝑀)

Proof of Theorem uc1pmon1p
StepHypRef Expression
1 uc1pmon1p.p . . . . 5 𝑃 = (Poly1𝑅)
21ply1ring 22165 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
32adantr 480 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → 𝑃 ∈ Ring)
4 uc1pmon1p.a . . . . . 6 𝐴 = (algSc‘𝑃)
5 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2729 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
71, 4, 5, 6ply1sclf 22204 . . . . 5 (𝑅 ∈ Ring → 𝐴:(Base‘𝑅)⟶(Base‘𝑃))
87adantr 480 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → 𝐴:(Base‘𝑅)⟶(Base‘𝑃))
9 uc1pmon1p.d . . . . . 6 𝐷 = (deg1𝑅)
10 eqid 2729 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
11 uc1pmon1p.c . . . . . 6 𝐶 = (Unic1p𝑅)
129, 10, 11uc1pldg 26087 . . . . 5 (𝑋𝐶 → ((coe1𝑋)‘(𝐷𝑋)) ∈ (Unit‘𝑅))
13 uc1pmon1p.i . . . . . 6 𝐼 = (invr𝑅)
1410, 13, 5ringinvcl 20312 . . . . 5 ((𝑅 ∈ Ring ∧ ((coe1𝑋)‘(𝐷𝑋)) ∈ (Unit‘𝑅)) → (𝐼‘((coe1𝑋)‘(𝐷𝑋))) ∈ (Base‘𝑅))
1512, 14sylan2 593 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (𝐼‘((coe1𝑋)‘(𝐷𝑋))) ∈ (Base‘𝑅))
168, 15ffvelcdmd 7039 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) ∈ (Base‘𝑃))
171, 6, 11uc1pcl 26082 . . . 4 (𝑋𝐶𝑋 ∈ (Base‘𝑃))
1817adantl 481 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → 𝑋 ∈ (Base‘𝑃))
19 uc1pmon1p.t . . . 4 · = (.r𝑃)
206, 19ringcl 20170 . . 3 ((𝑃 ∈ Ring ∧ (𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) ∈ (Base‘𝑃) ∧ 𝑋 ∈ (Base‘𝑃)) → ((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ∈ (Base‘𝑃))
213, 16, 18, 20syl3anc 1373 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ∈ (Base‘𝑃))
22 simpl 482 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → 𝑅 ∈ Ring)
23 eqid 2729 . . . . . . . 8 (RLReg‘𝑅) = (RLReg‘𝑅)
2423, 10unitrrg 20623 . . . . . . 7 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
2524adantr 480 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
2610, 13unitinvcl 20310 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((coe1𝑋)‘(𝐷𝑋)) ∈ (Unit‘𝑅)) → (𝐼‘((coe1𝑋)‘(𝐷𝑋))) ∈ (Unit‘𝑅))
2712, 26sylan2 593 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (𝐼‘((coe1𝑋)‘(𝐷𝑋))) ∈ (Unit‘𝑅))
2825, 27sseldd 3944 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (𝐼‘((coe1𝑋)‘(𝐷𝑋))) ∈ (RLReg‘𝑅))
299, 1, 23, 6, 19, 4deg1mul3 26054 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐼‘((coe1𝑋)‘(𝐷𝑋))) ∈ (RLReg‘𝑅) ∧ 𝑋 ∈ (Base‘𝑃)) → (𝐷‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋)) = (𝐷𝑋))
3022, 28, 18, 29syl3anc 1373 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (𝐷‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋)) = (𝐷𝑋))
319, 11uc1pdeg 26086 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (𝐷𝑋) ∈ ℕ0)
3230, 31eqeltrd 2828 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (𝐷‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋)) ∈ ℕ0)
33 eqid 2729 . . . . 5 (0g𝑃) = (0g𝑃)
349, 1, 33, 6deg1nn0clb 26028 . . . 4 ((𝑅 ∈ Ring ∧ ((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ∈ (Base‘𝑃)) → (((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ≠ (0g𝑃) ↔ (𝐷‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋)) ∈ ℕ0))
3521, 34syldan 591 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ≠ (0g𝑃) ↔ (𝐷‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋)) ∈ ℕ0))
3632, 35mpbird 257 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ≠ (0g𝑃))
3730fveq2d 6844 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ((coe1‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋))‘(𝐷‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋))) = ((coe1‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋))‘(𝐷𝑋)))
38 eqid 2729 . . . . . 6 (.r𝑅) = (.r𝑅)
391, 6, 5, 4, 19, 38coe1sclmul 22201 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐼‘((coe1𝑋)‘(𝐷𝑋))) ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑃)) → (coe1‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋)) = ((ℕ0 × {(𝐼‘((coe1𝑋)‘(𝐷𝑋)))}) ∘f (.r𝑅)(coe1𝑋)))
4022, 15, 18, 39syl3anc 1373 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (coe1‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋)) = ((ℕ0 × {(𝐼‘((coe1𝑋)‘(𝐷𝑋)))}) ∘f (.r𝑅)(coe1𝑋)))
4140fveq1d 6842 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ((coe1‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋))‘(𝐷𝑋)) = (((ℕ0 × {(𝐼‘((coe1𝑋)‘(𝐷𝑋)))}) ∘f (.r𝑅)(coe1𝑋))‘(𝐷𝑋)))
42 nn0ex 12424 . . . . . . 7 0 ∈ V
4342a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ℕ0 ∈ V)
44 fvexd 6855 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (𝐼‘((coe1𝑋)‘(𝐷𝑋))) ∈ V)
45 eqid 2729 . . . . . . . 8 (coe1𝑋) = (coe1𝑋)
4645, 6, 1, 5coe1f 22129 . . . . . . 7 (𝑋 ∈ (Base‘𝑃) → (coe1𝑋):ℕ0⟶(Base‘𝑅))
47 ffn 6670 . . . . . . 7 ((coe1𝑋):ℕ0⟶(Base‘𝑅) → (coe1𝑋) Fn ℕ0)
4818, 46, 473syl 18 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (coe1𝑋) Fn ℕ0)
49 eqidd 2730 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐶) ∧ (𝐷𝑋) ∈ ℕ0) → ((coe1𝑋)‘(𝐷𝑋)) = ((coe1𝑋)‘(𝐷𝑋)))
5043, 44, 48, 49ofc1 7661 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐶) ∧ (𝐷𝑋) ∈ ℕ0) → (((ℕ0 × {(𝐼‘((coe1𝑋)‘(𝐷𝑋)))}) ∘f (.r𝑅)(coe1𝑋))‘(𝐷𝑋)) = ((𝐼‘((coe1𝑋)‘(𝐷𝑋)))(.r𝑅)((coe1𝑋)‘(𝐷𝑋))))
5131, 50mpdan 687 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (((ℕ0 × {(𝐼‘((coe1𝑋)‘(𝐷𝑋)))}) ∘f (.r𝑅)(coe1𝑋))‘(𝐷𝑋)) = ((𝐼‘((coe1𝑋)‘(𝐷𝑋)))(.r𝑅)((coe1𝑋)‘(𝐷𝑋))))
52 eqid 2729 . . . . . 6 (1r𝑅) = (1r𝑅)
5310, 13, 38, 52unitlinv 20313 . . . . 5 ((𝑅 ∈ Ring ∧ ((coe1𝑋)‘(𝐷𝑋)) ∈ (Unit‘𝑅)) → ((𝐼‘((coe1𝑋)‘(𝐷𝑋)))(.r𝑅)((coe1𝑋)‘(𝐷𝑋))) = (1r𝑅))
5412, 53sylan2 593 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ((𝐼‘((coe1𝑋)‘(𝐷𝑋)))(.r𝑅)((coe1𝑋)‘(𝐷𝑋))) = (1r𝑅))
5551, 54eqtrd 2764 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (((ℕ0 × {(𝐼‘((coe1𝑋)‘(𝐷𝑋)))}) ∘f (.r𝑅)(coe1𝑋))‘(𝐷𝑋)) = (1r𝑅))
5637, 41, 553eqtrd 2768 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ((coe1‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋))‘(𝐷‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋))) = (1r𝑅))
57 uc1pmon1p.m . . 3 𝑀 = (Monic1p𝑅)
581, 6, 33, 9, 57, 52ismon1p 26081 . 2 (((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ∈ 𝑀 ↔ (((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ∈ (Base‘𝑃) ∧ ((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ≠ (0g𝑃) ∧ ((coe1‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋))‘(𝐷‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋))) = (1r𝑅)))
5921, 36, 56, 58syl3anbrc 1344 1 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ∈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  wss 3911  {csn 4585   × cxp 5629   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  0cn0 12418  Basecbs 17155  .rcmulr 17197  0gc0g 17378  1rcur 20101  Ringcrg 20153  Unitcui 20275  invrcinvr 20307  RLRegcrlreg 20611  algSccascl 21794  Poly1cpl1 22094  coe1cco1 22095  deg1cdg1 25992  Monic1pcmn1 26064  Unic1pcuc1p 26065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-subrng 20466  df-subrg 20490  df-rlreg 20614  df-lmod 20800  df-lss 20870  df-cnfld 21297  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-coe1 22100  df-mdeg 25993  df-deg1 25994  df-mon1 26069  df-uc1p 26070
This theorem is referenced by:  ig1peu  26113  irngnzply1lem  33678
  Copyright terms: Public domain W3C validator