Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  matvscacell Structured version   Visualization version   GIF version

Theorem matvscacell 21048
 Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by AV, 7-Aug-2019.)
Hypotheses
Ref Expression
matplusgcell.a 𝐴 = (𝑁 Mat 𝑅)
matplusgcell.b 𝐵 = (Base‘𝐴)
matvscacell.k 𝐾 = (Base‘𝑅)
matvscacell.v · = ( ·𝑠𝐴)
matvscacell.t × = (.r𝑅)
Assertion
Ref Expression
matvscacell ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝑋 × (𝐼𝑌𝐽)))

Proof of Theorem matvscacell
StepHypRef Expression
1 matplusgcell.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 matplusgcell.b . . . . 5 𝐵 = (Base‘𝐴)
3 matvscacell.k . . . . 5 𝐾 = (Base‘𝑅)
4 matvscacell.v . . . . 5 · = ( ·𝑠𝐴)
5 matvscacell.t . . . . 5 × = (.r𝑅)
6 eqid 2798 . . . . 5 (𝑁 × 𝑁) = (𝑁 × 𝑁)
71, 2, 3, 4, 5, 6matvsca2 21040 . . . 4 ((𝑋𝐾𝑌𝐵) → (𝑋 · 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌))
87oveqd 7152 . . 3 ((𝑋𝐾𝑌𝐵) → (𝐼(𝑋 · 𝑌)𝐽) = (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)𝐽))
983ad2ant2 1131 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)𝐽))
10 df-ov 7138 . . 3 (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)𝐽) = ((((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)‘⟨𝐼, 𝐽⟩)
1110a1i 11 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)𝐽) = ((((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)‘⟨𝐼, 𝐽⟩))
12 opelxpi 5556 . . . 4 ((𝐼𝑁𝐽𝑁) → ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁))
13123ad2ant3 1132 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁))
141, 2matrcl 21024 . . . . . . . 8 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1514simpld 498 . . . . . . 7 (𝑌𝐵𝑁 ∈ Fin)
1615adantl 485 . . . . . 6 ((𝑋𝐾𝑌𝐵) → 𝑁 ∈ Fin)
17163ad2ant2 1131 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑁 ∈ Fin)
18 xpfi 8775 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
1917, 17, 18syl2anc 587 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑁 × 𝑁) ∈ Fin)
20 simp2l 1196 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑋𝐾)
212eleq2i 2881 . . . . . . . . 9 (𝑌𝐵𝑌 ∈ (Base‘𝐴))
2221biimpi 219 . . . . . . . 8 (𝑌𝐵𝑌 ∈ (Base‘𝐴))
2322adantl 485 . . . . . . 7 ((𝑋𝐾𝑌𝐵) → 𝑌 ∈ (Base‘𝐴))
24233ad2ant2 1131 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑌 ∈ (Base‘𝐴))
25 simp1 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Ring)
26 eqid 2798 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
271, 26matbas2 21033 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
2817, 25, 27syl2anc 587 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
2924, 28eleqtrrd 2893 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
30 elmapfn 8414 . . . . 5 (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁))
3129, 30syl 17 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑌 Fn (𝑁 × 𝑁))
32 df-ov 7138 . . . . . 6 (𝐼𝑌𝐽) = (𝑌‘⟨𝐼, 𝐽⟩)
3332eqcomi 2807 . . . . 5 (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽)
3433a1i 11 . . . 4 (((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽))
3519, 20, 31, 34ofc1 7414 . . 3 (((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → ((((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)‘⟨𝐼, 𝐽⟩) = (𝑋 × (𝐼𝑌𝐽)))
3613, 35mpdan 686 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)‘⟨𝐼, 𝐽⟩) = (𝑋 × (𝐼𝑌𝐽)))
379, 11, 363eqtrd 2837 1 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝑋 × (𝐼𝑌𝐽)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  Vcvv 3441  {csn 4525  ⟨cop 4531   × cxp 5517   Fn wfn 6319  ‘cfv 6324  (class class class)co 7135   ∘f cof 7388   ↑m cmap 8391  Fincfn 8494  Basecbs 16477  .rcmulr 16560   ·𝑠 cvsca 16563  Ringcrg 19293   Mat cmat 21019 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7390  df-om 7563  df-1st 7673  df-2nd 7674  df-supp 7816  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-map 8393  df-ixp 8447  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-fsupp 8820  df-sup 8892  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-5 11693  df-6 11694  df-7 11695  df-8 11696  df-9 11697  df-n0 11888  df-z 11972  df-dec 12089  df-uz 12234  df-fz 12888  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-0g 16709  df-prds 16715  df-pws 16717  df-sra 19940  df-rgmod 19941  df-dsmm 20425  df-frlm 20440  df-mat 21020 This theorem is referenced by:  dmatscmcl  21115  scmatscmide  21119  scmatscm  21125  mat2pmatlin  21347  monmatcollpw  21391  pmatcollpwlem  21392  chpmat1dlem  21447  chpdmatlem2  21451  chpdmatlem3  21452
 Copyright terms: Public domain W3C validator