| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matvscacell | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by AV, 7-Aug-2019.) |
| Ref | Expression |
|---|---|
| matplusgcell.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matplusgcell.b | ⊢ 𝐵 = (Base‘𝐴) |
| matvscacell.k | ⊢ 𝐾 = (Base‘𝑅) |
| matvscacell.v | ⊢ · = ( ·𝑠 ‘𝐴) |
| matvscacell.t | ⊢ × = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| matvscacell | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝑋 × (𝐼𝑌𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matplusgcell.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | matplusgcell.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | matvscacell.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 4 | matvscacell.v | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐴) | |
| 5 | matvscacell.t | . . . . 5 ⊢ × = (.r‘𝑅) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (𝑁 × 𝑁) = (𝑁 × 𝑁) | |
| 7 | 1, 2, 3, 4, 5, 6 | matvsca2 22291 | . . . 4 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)) |
| 8 | 7 | oveqd 7386 | . . 3 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝐼(𝑋 · 𝑌)𝐽) = (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)𝐽)) |
| 9 | 8 | 3ad2ant2 1134 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)𝐽)) |
| 10 | df-ov 7372 | . . 3 ⊢ (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)𝐽) = ((((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)‘〈𝐼, 𝐽〉) | |
| 11 | 10 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)𝐽) = ((((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)‘〈𝐼, 𝐽〉)) |
| 12 | opelxpi 5668 | . . . 4 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) | |
| 13 | 12 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) |
| 14 | 1, 2 | matrcl 22275 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 15 | 14 | simpld 494 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑁 ∈ Fin) |
| 17 | 16 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑁 ∈ Fin) |
| 18 | xpfi 9245 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) | |
| 19 | 17, 17, 18 | syl2anc 584 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑁 × 𝑁) ∈ Fin) |
| 20 | simp2l 1200 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑋 ∈ 𝐾) | |
| 21 | 2 | eleq2i 2820 | . . . . . . . . 9 ⊢ (𝑌 ∈ 𝐵 ↔ 𝑌 ∈ (Base‘𝐴)) |
| 22 | 21 | biimpi 216 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘𝐴)) |
| 23 | 22 | adantl 481 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘𝐴)) |
| 24 | 23 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑌 ∈ (Base‘𝐴)) |
| 25 | simp1 1136 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
| 26 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 27 | 1, 26 | matbas2 22284 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
| 28 | 17, 25, 27 | syl2anc 584 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
| 29 | 24, 28 | eleqtrrd 2831 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 30 | elmapfn 8815 | . . . . 5 ⊢ (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁)) | |
| 31 | 29, 30 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑌 Fn (𝑁 × 𝑁)) |
| 32 | df-ov 7372 | . . . . . 6 ⊢ (𝐼𝑌𝐽) = (𝑌‘〈𝐼, 𝐽〉) | |
| 33 | 32 | eqcomi 2738 | . . . . 5 ⊢ (𝑌‘〈𝐼, 𝐽〉) = (𝐼𝑌𝐽) |
| 34 | 33 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → (𝑌‘〈𝐼, 𝐽〉) = (𝐼𝑌𝐽)) |
| 35 | 19, 20, 31, 34 | ofc1 7661 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → ((((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)‘〈𝐼, 𝐽〉) = (𝑋 × (𝐼𝑌𝐽))) |
| 36 | 13, 35 | mpdan 687 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)‘〈𝐼, 𝐽〉) = (𝑋 × (𝐼𝑌𝐽))) |
| 37 | 9, 11, 36 | 3eqtrd 2768 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝑋 × (𝐼𝑌𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 〈cop 4591 × cxp 5629 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 ↑m cmap 8776 Fincfn 8895 Basecbs 17155 .rcmulr 17197 ·𝑠 cvsca 17200 Ringcrg 20118 Mat cmat 22270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-prds 17386 df-pws 17388 df-sra 21056 df-rgmod 21057 df-dsmm 21617 df-frlm 21632 df-mat 22271 |
| This theorem is referenced by: dmatscmcl 22366 scmatscmide 22370 scmatscm 22376 mat2pmatlin 22598 monmatcollpw 22642 pmatcollpwlem 22643 chpmat1dlem 22698 chpdmatlem2 22702 chpdmatlem3 22703 |
| Copyright terms: Public domain | W3C validator |