MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matvscacell Structured version   Visualization version   GIF version

Theorem matvscacell 22321
Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by AV, 7-Aug-2019.)
Hypotheses
Ref Expression
matplusgcell.a 𝐴 = (𝑁 Mat 𝑅)
matplusgcell.b 𝐵 = (Base‘𝐴)
matvscacell.k 𝐾 = (Base‘𝑅)
matvscacell.v · = ( ·𝑠𝐴)
matvscacell.t × = (.r𝑅)
Assertion
Ref Expression
matvscacell ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝑋 × (𝐼𝑌𝐽)))

Proof of Theorem matvscacell
StepHypRef Expression
1 matplusgcell.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 matplusgcell.b . . . . 5 𝐵 = (Base‘𝐴)
3 matvscacell.k . . . . 5 𝐾 = (Base‘𝑅)
4 matvscacell.v . . . . 5 · = ( ·𝑠𝐴)
5 matvscacell.t . . . . 5 × = (.r𝑅)
6 eqid 2729 . . . . 5 (𝑁 × 𝑁) = (𝑁 × 𝑁)
71, 2, 3, 4, 5, 6matvsca2 22313 . . . 4 ((𝑋𝐾𝑌𝐵) → (𝑋 · 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌))
87oveqd 7366 . . 3 ((𝑋𝐾𝑌𝐵) → (𝐼(𝑋 · 𝑌)𝐽) = (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)𝐽))
983ad2ant2 1134 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)𝐽))
10 df-ov 7352 . . 3 (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)𝐽) = ((((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)‘⟨𝐼, 𝐽⟩)
1110a1i 11 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)𝐽) = ((((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)‘⟨𝐼, 𝐽⟩))
12 opelxpi 5656 . . . 4 ((𝐼𝑁𝐽𝑁) → ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁))
13123ad2ant3 1135 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁))
141, 2matrcl 22297 . . . . . . . 8 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1514simpld 494 . . . . . . 7 (𝑌𝐵𝑁 ∈ Fin)
1615adantl 481 . . . . . 6 ((𝑋𝐾𝑌𝐵) → 𝑁 ∈ Fin)
17163ad2ant2 1134 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑁 ∈ Fin)
18 xpfi 9209 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
1917, 17, 18syl2anc 584 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑁 × 𝑁) ∈ Fin)
20 simp2l 1200 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑋𝐾)
212eleq2i 2820 . . . . . . . . 9 (𝑌𝐵𝑌 ∈ (Base‘𝐴))
2221biimpi 216 . . . . . . . 8 (𝑌𝐵𝑌 ∈ (Base‘𝐴))
2322adantl 481 . . . . . . 7 ((𝑋𝐾𝑌𝐵) → 𝑌 ∈ (Base‘𝐴))
24233ad2ant2 1134 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑌 ∈ (Base‘𝐴))
25 simp1 1136 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Ring)
26 eqid 2729 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
271, 26matbas2 22306 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
2817, 25, 27syl2anc 584 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
2924, 28eleqtrrd 2831 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
30 elmapfn 8792 . . . . 5 (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁))
3129, 30syl 17 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑌 Fn (𝑁 × 𝑁))
32 df-ov 7352 . . . . . 6 (𝐼𝑌𝐽) = (𝑌‘⟨𝐼, 𝐽⟩)
3332eqcomi 2738 . . . . 5 (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽)
3433a1i 11 . . . 4 (((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽))
3519, 20, 31, 34ofc1 7641 . . 3 (((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → ((((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)‘⟨𝐼, 𝐽⟩) = (𝑋 × (𝐼𝑌𝐽)))
3613, 35mpdan 687 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)‘⟨𝐼, 𝐽⟩) = (𝑋 × (𝐼𝑌𝐽)))
379, 11, 363eqtrd 2768 1 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝑋 × (𝐼𝑌𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  {csn 4577  cop 4583   × cxp 5617   Fn wfn 6477  cfv 6482  (class class class)co 7349  f cof 7611  m cmap 8753  Fincfn 8872  Basecbs 17120  .rcmulr 17162   ·𝑠 cvsca 17165  Ringcrg 20118   Mat cmat 22292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-sra 21077  df-rgmod 21078  df-dsmm 21639  df-frlm 21654  df-mat 22293
This theorem is referenced by:  dmatscmcl  22388  scmatscmide  22392  scmatscm  22398  mat2pmatlin  22620  monmatcollpw  22664  pmatcollpwlem  22665  chpmat1dlem  22720  chpdmatlem2  22724  chpdmatlem3  22725
  Copyright terms: Public domain W3C validator