| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matvscacell | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by AV, 7-Aug-2019.) |
| Ref | Expression |
|---|---|
| matplusgcell.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matplusgcell.b | ⊢ 𝐵 = (Base‘𝐴) |
| matvscacell.k | ⊢ 𝐾 = (Base‘𝑅) |
| matvscacell.v | ⊢ · = ( ·𝑠 ‘𝐴) |
| matvscacell.t | ⊢ × = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| matvscacell | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝑋 × (𝐼𝑌𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matplusgcell.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | matplusgcell.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | matvscacell.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 4 | matvscacell.v | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐴) | |
| 5 | matvscacell.t | . . . . 5 ⊢ × = (.r‘𝑅) | |
| 6 | eqid 2735 | . . . . 5 ⊢ (𝑁 × 𝑁) = (𝑁 × 𝑁) | |
| 7 | 1, 2, 3, 4, 5, 6 | matvsca2 22366 | . . . 4 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)) |
| 8 | 7 | oveqd 7422 | . . 3 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝐼(𝑋 · 𝑌)𝐽) = (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)𝐽)) |
| 9 | 8 | 3ad2ant2 1134 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)𝐽)) |
| 10 | df-ov 7408 | . . 3 ⊢ (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)𝐽) = ((((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)‘〈𝐼, 𝐽〉) | |
| 11 | 10 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)𝐽) = ((((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)‘〈𝐼, 𝐽〉)) |
| 12 | opelxpi 5691 | . . . 4 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) | |
| 13 | 12 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) |
| 14 | 1, 2 | matrcl 22350 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 15 | 14 | simpld 494 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑁 ∈ Fin) |
| 17 | 16 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑁 ∈ Fin) |
| 18 | xpfi 9330 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) | |
| 19 | 17, 17, 18 | syl2anc 584 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑁 × 𝑁) ∈ Fin) |
| 20 | simp2l 1200 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑋 ∈ 𝐾) | |
| 21 | 2 | eleq2i 2826 | . . . . . . . . 9 ⊢ (𝑌 ∈ 𝐵 ↔ 𝑌 ∈ (Base‘𝐴)) |
| 22 | 21 | biimpi 216 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘𝐴)) |
| 23 | 22 | adantl 481 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘𝐴)) |
| 24 | 23 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑌 ∈ (Base‘𝐴)) |
| 25 | simp1 1136 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
| 26 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 27 | 1, 26 | matbas2 22359 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
| 28 | 17, 25, 27 | syl2anc 584 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
| 29 | 24, 28 | eleqtrrd 2837 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 30 | elmapfn 8879 | . . . . 5 ⊢ (𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁)) | |
| 31 | 29, 30 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑌 Fn (𝑁 × 𝑁)) |
| 32 | df-ov 7408 | . . . . . 6 ⊢ (𝐼𝑌𝐽) = (𝑌‘〈𝐼, 𝐽〉) | |
| 33 | 32 | eqcomi 2744 | . . . . 5 ⊢ (𝑌‘〈𝐼, 𝐽〉) = (𝐼𝑌𝐽) |
| 34 | 33 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → (𝑌‘〈𝐼, 𝐽〉) = (𝐼𝑌𝐽)) |
| 35 | 19, 20, 31, 34 | ofc1 7699 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 〈𝐼, 𝐽〉 ∈ (𝑁 × 𝑁)) → ((((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)‘〈𝐼, 𝐽〉) = (𝑋 × (𝐼𝑌𝐽))) |
| 36 | 13, 35 | mpdan 687 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)‘〈𝐼, 𝐽〉) = (𝑋 × (𝐼𝑌𝐽))) |
| 37 | 9, 11, 36 | 3eqtrd 2774 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝑋 × (𝐼𝑌𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 〈cop 4607 × cxp 5652 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 ∘f cof 7669 ↑m cmap 8840 Fincfn 8959 Basecbs 17228 .rcmulr 17272 ·𝑠 cvsca 17275 Ringcrg 20193 Mat cmat 22345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-prds 17461 df-pws 17463 df-sra 21131 df-rgmod 21132 df-dsmm 21692 df-frlm 21707 df-mat 22346 |
| This theorem is referenced by: dmatscmcl 22441 scmatscmide 22445 scmatscm 22451 mat2pmatlin 22673 monmatcollpw 22717 pmatcollpwlem 22718 chpmat1dlem 22773 chpdmatlem2 22777 chpdmatlem3 22778 |
| Copyright terms: Public domain | W3C validator |