MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrvscaval Structured version   Visualization version   GIF version

Theorem psrvscaval 21866
Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psrvsca.s 𝑆 = (𝐼 mPwSer 𝑅)
psrvsca.n = ( ·𝑠𝑆)
psrvsca.k 𝐾 = (Base‘𝑅)
psrvsca.b 𝐵 = (Base‘𝑆)
psrvsca.m · = (.r𝑅)
psrvsca.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrvsca.x (𝜑𝑋𝐾)
psrvsca.y (𝜑𝐹𝐵)
psrvscaval.y (𝜑𝑌𝐷)
Assertion
Ref Expression
psrvscaval (𝜑 → ((𝑋 𝐹)‘𝑌) = (𝑋 · (𝐹𝑌)))
Distinct variable group:   ,𝐼
Allowed substitution hints:   𝜑()   𝐵()   𝐷()   𝑅()   𝑆()   ()   · ()   𝐹()   𝐾()   𝑋()   𝑌()

Proof of Theorem psrvscaval
StepHypRef Expression
1 psrvsca.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 psrvsca.n . . . 4 = ( ·𝑠𝑆)
3 psrvsca.k . . . 4 𝐾 = (Base‘𝑅)
4 psrvsca.b . . . 4 𝐵 = (Base‘𝑆)
5 psrvsca.m . . . 4 · = (.r𝑅)
6 psrvsca.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 psrvsca.x . . . 4 (𝜑𝑋𝐾)
8 psrvsca.y . . . 4 (𝜑𝐹𝐵)
91, 2, 3, 4, 5, 6, 7, 8psrvsca 21865 . . 3 (𝜑 → (𝑋 𝐹) = ((𝐷 × {𝑋}) ∘f · 𝐹))
109fveq1d 6863 . 2 (𝜑 → ((𝑋 𝐹)‘𝑌) = (((𝐷 × {𝑋}) ∘f · 𝐹)‘𝑌))
11 psrvscaval.y . . 3 (𝜑𝑌𝐷)
12 ovex 7423 . . . . . 6 (ℕ0m 𝐼) ∈ V
136, 12rabex2 5299 . . . . 5 𝐷 ∈ V
1413a1i 11 . . . 4 (𝜑𝐷 ∈ V)
151, 3, 6, 4, 8psrelbas 21850 . . . . 5 (𝜑𝐹:𝐷𝐾)
1615ffnd 6692 . . . 4 (𝜑𝐹 Fn 𝐷)
17 eqidd 2731 . . . 4 ((𝜑𝑌𝐷) → (𝐹𝑌) = (𝐹𝑌))
1814, 7, 16, 17ofc1 7684 . . 3 ((𝜑𝑌𝐷) → (((𝐷 × {𝑋}) ∘f · 𝐹)‘𝑌) = (𝑋 · (𝐹𝑌)))
1911, 18mpdan 687 . 2 (𝜑 → (((𝐷 × {𝑋}) ∘f · 𝐹)‘𝑌) = (𝑋 · (𝐹𝑌)))
2010, 19eqtrd 2765 1 (𝜑 → ((𝑋 𝐹)‘𝑌) = (𝑋 · (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  {csn 4592   × cxp 5639  ccnv 5640  cima 5644  cfv 6514  (class class class)co 7390  f cof 7654  m cmap 8802  Fincfn 8921  cn 12193  0cn0 12449  Basecbs 17186  .rcmulr 17228   ·𝑠 cvsca 17231   mPwSer cmps 21820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-tset 17246  df-psr 21825
This theorem is referenced by:  psrass23l  21883  psrass23  21885  mpllsslem  21916  psdvsca  22058
  Copyright terms: Public domain W3C validator