MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrvscaval Structured version   Visualization version   GIF version

Theorem psrvscaval 20771
Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psrvsca.s 𝑆 = (𝐼 mPwSer 𝑅)
psrvsca.n = ( ·𝑠𝑆)
psrvsca.k 𝐾 = (Base‘𝑅)
psrvsca.b 𝐵 = (Base‘𝑆)
psrvsca.m · = (.r𝑅)
psrvsca.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrvsca.x (𝜑𝑋𝐾)
psrvsca.y (𝜑𝐹𝐵)
psrvscaval.y (𝜑𝑌𝐷)
Assertion
Ref Expression
psrvscaval (𝜑 → ((𝑋 𝐹)‘𝑌) = (𝑋 · (𝐹𝑌)))
Distinct variable group:   ,𝐼
Allowed substitution hints:   𝜑()   𝐵()   𝐷()   𝑅()   𝑆()   ()   · ()   𝐹()   𝐾()   𝑋()   𝑌()

Proof of Theorem psrvscaval
StepHypRef Expression
1 psrvsca.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 psrvsca.n . . . 4 = ( ·𝑠𝑆)
3 psrvsca.k . . . 4 𝐾 = (Base‘𝑅)
4 psrvsca.b . . . 4 𝐵 = (Base‘𝑆)
5 psrvsca.m . . . 4 · = (.r𝑅)
6 psrvsca.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 psrvsca.x . . . 4 (𝜑𝑋𝐾)
8 psrvsca.y . . . 4 (𝜑𝐹𝐵)
91, 2, 3, 4, 5, 6, 7, 8psrvsca 20770 . . 3 (𝜑 → (𝑋 𝐹) = ((𝐷 × {𝑋}) ∘f · 𝐹))
109fveq1d 6676 . 2 (𝜑 → ((𝑋 𝐹)‘𝑌) = (((𝐷 × {𝑋}) ∘f · 𝐹)‘𝑌))
11 psrvscaval.y . . 3 (𝜑𝑌𝐷)
12 ovex 7203 . . . . . 6 (ℕ0m 𝐼) ∈ V
136, 12rabex2 5202 . . . . 5 𝐷 ∈ V
1413a1i 11 . . . 4 (𝜑𝐷 ∈ V)
151, 3, 6, 4, 8psrelbas 20758 . . . . 5 (𝜑𝐹:𝐷𝐾)
1615ffnd 6505 . . . 4 (𝜑𝐹 Fn 𝐷)
17 eqidd 2739 . . . 4 ((𝜑𝑌𝐷) → (𝐹𝑌) = (𝐹𝑌))
1814, 7, 16, 17ofc1 7450 . . 3 ((𝜑𝑌𝐷) → (((𝐷 × {𝑋}) ∘f · 𝐹)‘𝑌) = (𝑋 · (𝐹𝑌)))
1911, 18mpdan 687 . 2 (𝜑 → (((𝐷 × {𝑋}) ∘f · 𝐹)‘𝑌) = (𝑋 · (𝐹𝑌)))
2010, 19eqtrd 2773 1 (𝜑 → ((𝑋 𝐹)‘𝑌) = (𝑋 · (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  {crab 3057  Vcvv 3398  {csn 4516   × cxp 5523  ccnv 5524  cima 5528  cfv 6339  (class class class)co 7170  f cof 7423  m cmap 8437  Fincfn 8555  cn 11716  0cn0 11976  Basecbs 16586  .rcmulr 16669   ·𝑠 cvsca 16672   mPwSer cmps 20717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-plusg 16681  df-mulr 16682  df-sca 16684  df-vsca 16685  df-tset 16687  df-psr 20722
This theorem is referenced by:  psrass23l  20787  psrass23  20789  mpllsslem  20816
  Copyright terms: Public domain W3C validator