MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrvscaval Structured version   Visualization version   GIF version

Theorem psrvscaval 21897
Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psrvsca.s 𝑆 = (𝐼 mPwSer 𝑅)
psrvsca.n = ( ·𝑠𝑆)
psrvsca.k 𝐾 = (Base‘𝑅)
psrvsca.b 𝐵 = (Base‘𝑆)
psrvsca.m · = (.r𝑅)
psrvsca.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrvsca.x (𝜑𝑋𝐾)
psrvsca.y (𝜑𝐹𝐵)
psrvscaval.y (𝜑𝑌𝐷)
Assertion
Ref Expression
psrvscaval (𝜑 → ((𝑋 𝐹)‘𝑌) = (𝑋 · (𝐹𝑌)))
Distinct variable group:   ,𝐼
Allowed substitution hints:   𝜑()   𝐵()   𝐷()   𝑅()   𝑆()   ()   · ()   𝐹()   𝐾()   𝑋()   𝑌()

Proof of Theorem psrvscaval
StepHypRef Expression
1 psrvsca.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 psrvsca.n . . . 4 = ( ·𝑠𝑆)
3 psrvsca.k . . . 4 𝐾 = (Base‘𝑅)
4 psrvsca.b . . . 4 𝐵 = (Base‘𝑆)
5 psrvsca.m . . . 4 · = (.r𝑅)
6 psrvsca.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 psrvsca.x . . . 4 (𝜑𝑋𝐾)
8 psrvsca.y . . . 4 (𝜑𝐹𝐵)
91, 2, 3, 4, 5, 6, 7, 8psrvsca 21896 . . 3 (𝜑 → (𝑋 𝐹) = ((𝐷 × {𝑋}) ∘f · 𝐹))
109fveq1d 6833 . 2 (𝜑 → ((𝑋 𝐹)‘𝑌) = (((𝐷 × {𝑋}) ∘f · 𝐹)‘𝑌))
11 psrvscaval.y . . 3 (𝜑𝑌𝐷)
12 ovex 7388 . . . . . 6 (ℕ0m 𝐼) ∈ V
136, 12rabex2 5283 . . . . 5 𝐷 ∈ V
1413a1i 11 . . . 4 (𝜑𝐷 ∈ V)
151, 3, 6, 4, 8psrelbas 21881 . . . . 5 (𝜑𝐹:𝐷𝐾)
1615ffnd 6660 . . . 4 (𝜑𝐹 Fn 𝐷)
17 eqidd 2734 . . . 4 ((𝜑𝑌𝐷) → (𝐹𝑌) = (𝐹𝑌))
1814, 7, 16, 17ofc1 7647 . . 3 ((𝜑𝑌𝐷) → (((𝐷 × {𝑋}) ∘f · 𝐹)‘𝑌) = (𝑋 · (𝐹𝑌)))
1911, 18mpdan 687 . 2 (𝜑 → (((𝐷 × {𝑋}) ∘f · 𝐹)‘𝑌) = (𝑋 · (𝐹𝑌)))
2010, 19eqtrd 2768 1 (𝜑 → ((𝑋 𝐹)‘𝑌) = (𝑋 · (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3397  Vcvv 3438  {csn 4577   × cxp 5619  ccnv 5620  cima 5624  cfv 6489  (class class class)co 7355  f cof 7617  m cmap 8759  Fincfn 8878  cn 12135  0cn0 12391  Basecbs 17130  .rcmulr 17172   ·𝑠 cvsca 17175   mPwSer cmps 21851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-uz 12743  df-fz 13418  df-struct 17068  df-slot 17103  df-ndx 17115  df-base 17131  df-plusg 17184  df-mulr 17185  df-sca 17187  df-vsca 17188  df-tset 17190  df-psr 21856
This theorem is referenced by:  psrass23l  21914  psrass23  21916  mpllsslem  21947  psdvsca  22089
  Copyright terms: Public domain W3C validator