![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrvscaval | Structured version Visualization version GIF version |
Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
psrvsca.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrvsca.n | ⊢ ∙ = ( ·𝑠 ‘𝑆) |
psrvsca.k | ⊢ 𝐾 = (Base‘𝑅) |
psrvsca.b | ⊢ 𝐵 = (Base‘𝑆) |
psrvsca.m | ⊢ · = (.r‘𝑅) |
psrvsca.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
psrvsca.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
psrvsca.y | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
psrvscaval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐷) |
Ref | Expression |
---|---|
psrvscaval | ⊢ (𝜑 → ((𝑋 ∙ 𝐹)‘𝑌) = (𝑋 · (𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrvsca.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
2 | psrvsca.n | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑆) | |
3 | psrvsca.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
4 | psrvsca.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
5 | psrvsca.m | . . . 4 ⊢ · = (.r‘𝑅) | |
6 | psrvsca.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
7 | psrvsca.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
8 | psrvsca.y | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | psrvsca 21992 | . . 3 ⊢ (𝜑 → (𝑋 ∙ 𝐹) = ((𝐷 × {𝑋}) ∘f · 𝐹)) |
10 | 9 | fveq1d 6922 | . 2 ⊢ (𝜑 → ((𝑋 ∙ 𝐹)‘𝑌) = (((𝐷 × {𝑋}) ∘f · 𝐹)‘𝑌)) |
11 | psrvscaval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐷) | |
12 | ovex 7481 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
13 | 6, 12 | rabex2 5359 | . . . . 5 ⊢ 𝐷 ∈ V |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
15 | 1, 3, 6, 4, 8 | psrelbas 21977 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐷⟶𝐾) |
16 | 15 | ffnd 6748 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐷) |
17 | eqidd 2741 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) = (𝐹‘𝑌)) | |
18 | 14, 7, 16, 17 | ofc1 7741 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐷) → (((𝐷 × {𝑋}) ∘f · 𝐹)‘𝑌) = (𝑋 · (𝐹‘𝑌))) |
19 | 11, 18 | mpdan 686 | . 2 ⊢ (𝜑 → (((𝐷 × {𝑋}) ∘f · 𝐹)‘𝑌) = (𝑋 · (𝐹‘𝑌))) |
20 | 10, 19 | eqtrd 2780 | 1 ⊢ (𝜑 → ((𝑋 ∙ 𝐹)‘𝑌) = (𝑋 · (𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 {csn 4648 × cxp 5698 ◡ccnv 5699 “ cima 5703 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 ↑m cmap 8884 Fincfn 9003 ℕcn 12293 ℕ0cn0 12553 Basecbs 17258 .rcmulr 17312 ·𝑠 cvsca 17315 mPwSer cmps 21947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-tset 17330 df-psr 21952 |
This theorem is referenced by: psrass23l 22010 psrass23 22012 mpllsslem 22043 psdvsca 22191 |
Copyright terms: Public domain | W3C validator |