| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrvscaval | Structured version Visualization version GIF version | ||
| Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrvsca.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrvsca.n | ⊢ ∙ = ( ·𝑠 ‘𝑆) |
| psrvsca.k | ⊢ 𝐾 = (Base‘𝑅) |
| psrvsca.b | ⊢ 𝐵 = (Base‘𝑆) |
| psrvsca.m | ⊢ · = (.r‘𝑅) |
| psrvsca.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| psrvsca.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| psrvsca.y | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| psrvscaval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| psrvscaval | ⊢ (𝜑 → ((𝑋 ∙ 𝐹)‘𝑌) = (𝑋 · (𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrvsca.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 2 | psrvsca.n | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑆) | |
| 3 | psrvsca.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 4 | psrvsca.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 5 | psrvsca.m | . . . 4 ⊢ · = (.r‘𝑅) | |
| 6 | psrvsca.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 7 | psrvsca.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 8 | psrvsca.y | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | psrvsca 21896 | . . 3 ⊢ (𝜑 → (𝑋 ∙ 𝐹) = ((𝐷 × {𝑋}) ∘f · 𝐹)) |
| 10 | 9 | fveq1d 6833 | . 2 ⊢ (𝜑 → ((𝑋 ∙ 𝐹)‘𝑌) = (((𝐷 × {𝑋}) ∘f · 𝐹)‘𝑌)) |
| 11 | psrvscaval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐷) | |
| 12 | ovex 7388 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 13 | 6, 12 | rabex2 5283 | . . . . 5 ⊢ 𝐷 ∈ V |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
| 15 | 1, 3, 6, 4, 8 | psrelbas 21881 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐷⟶𝐾) |
| 16 | 15 | ffnd 6660 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐷) |
| 17 | eqidd 2734 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) = (𝐹‘𝑌)) | |
| 18 | 14, 7, 16, 17 | ofc1 7647 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐷) → (((𝐷 × {𝑋}) ∘f · 𝐹)‘𝑌) = (𝑋 · (𝐹‘𝑌))) |
| 19 | 11, 18 | mpdan 687 | . 2 ⊢ (𝜑 → (((𝐷 × {𝑋}) ∘f · 𝐹)‘𝑌) = (𝑋 · (𝐹‘𝑌))) |
| 20 | 10, 19 | eqtrd 2768 | 1 ⊢ (𝜑 → ((𝑋 ∙ 𝐹)‘𝑌) = (𝑋 · (𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3397 Vcvv 3438 {csn 4577 × cxp 5619 ◡ccnv 5620 “ cima 5624 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 ↑m cmap 8759 Fincfn 8878 ℕcn 12135 ℕ0cn0 12391 Basecbs 17130 .rcmulr 17172 ·𝑠 cvsca 17175 mPwSer cmps 21851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-uz 12743 df-fz 13418 df-struct 17068 df-slot 17103 df-ndx 17115 df-base 17131 df-plusg 17184 df-mulr 17185 df-sca 17187 df-vsca 17188 df-tset 17190 df-psr 21856 |
| This theorem is referenced by: psrass23l 21914 psrass23 21916 mpllsslem 21947 psdvsca 22089 |
| Copyright terms: Public domain | W3C validator |