![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnaword | Structured version Visualization version GIF version |
Description: Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
nnaword | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnaord 7983 | . . . 4 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵 ∈ 𝐴 ↔ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) | |
2 | 1 | 3com12 1114 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵 ∈ 𝐴 ↔ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) |
3 | 2 | notbid 310 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) |
4 | nnord 7351 | . . . 4 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
5 | nnord 7351 | . . . 4 ⊢ (𝐵 ∈ ω → Ord 𝐵) | |
6 | ordtri1 6009 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
7 | 4, 5, 6 | syl2an 589 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
8 | 7 | 3adant3 1123 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
9 | nnacl 7975 | . . . . 5 ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 +o 𝐴) ∈ ω) | |
10 | 9 | ancoms 452 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +o 𝐴) ∈ ω) |
11 | 10 | 3adant2 1122 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +o 𝐴) ∈ ω) |
12 | nnacl 7975 | . . . . 5 ⊢ ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 +o 𝐵) ∈ ω) | |
13 | 12 | ancoms 452 | . . . 4 ⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +o 𝐵) ∈ ω) |
14 | 13 | 3adant1 1121 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +o 𝐵) ∈ ω) |
15 | nnord 7351 | . . . 4 ⊢ ((𝐶 +o 𝐴) ∈ ω → Ord (𝐶 +o 𝐴)) | |
16 | nnord 7351 | . . . 4 ⊢ ((𝐶 +o 𝐵) ∈ ω → Ord (𝐶 +o 𝐵)) | |
17 | ordtri1 6009 | . . . 4 ⊢ ((Ord (𝐶 +o 𝐴) ∧ Ord (𝐶 +o 𝐵)) → ((𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) | |
18 | 15, 16, 17 | syl2an 589 | . . 3 ⊢ (((𝐶 +o 𝐴) ∈ ω ∧ (𝐶 +o 𝐵) ∈ ω) → ((𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) |
19 | 11, 14, 18 | syl2anc 579 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) |
20 | 3, 8, 19 | 3bitr4d 303 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ w3a 1071 ∈ wcel 2107 ⊆ wss 3792 Ord word 5975 (class class class)co 6922 ωcom 7343 +o coa 7840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-oadd 7847 |
This theorem is referenced by: nnacan 7992 nnaword1 7993 |
Copyright terms: Public domain | W3C validator |