MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaword Structured version   Visualization version   GIF version

Theorem nnaword 8639
Description: Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaword ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))

Proof of Theorem nnaword
StepHypRef Expression
1 nnaord 8631 . . . 4 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵𝐴 ↔ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
213com12 1123 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵𝐴 ↔ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
32notbid 318 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ 𝐵𝐴 ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
4 nnord 7869 . . . 4 (𝐴 ∈ ω → Ord 𝐴)
5 nnord 7869 . . . 4 (𝐵 ∈ ω → Ord 𝐵)
6 ordtri1 6385 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
74, 5, 6syl2an 596 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
873adant3 1132 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
9 nnacl 8623 . . . . 5 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 +o 𝐴) ∈ ω)
109ancoms 458 . . . 4 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +o 𝐴) ∈ ω)
11103adant2 1131 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +o 𝐴) ∈ ω)
12 nnacl 8623 . . . . 5 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 +o 𝐵) ∈ ω)
1312ancoms 458 . . . 4 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +o 𝐵) ∈ ω)
14133adant1 1130 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +o 𝐵) ∈ ω)
15 nnord 7869 . . . 4 ((𝐶 +o 𝐴) ∈ ω → Ord (𝐶 +o 𝐴))
16 nnord 7869 . . . 4 ((𝐶 +o 𝐵) ∈ ω → Ord (𝐶 +o 𝐵))
17 ordtri1 6385 . . . 4 ((Ord (𝐶 +o 𝐴) ∧ Ord (𝐶 +o 𝐵)) → ((𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
1815, 16, 17syl2an 596 . . 3 (((𝐶 +o 𝐴) ∈ ω ∧ (𝐶 +o 𝐵) ∈ ω) → ((𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
1911, 14, 18syl2anc 584 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
203, 8, 193bitr4d 311 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086  wcel 2108  wss 3926  Ord word 6351  (class class class)co 7405  ωcom 7861   +o coa 8477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-oadd 8484
This theorem is referenced by:  nnacan  8640  nnaword1  8641
  Copyright terms: Public domain W3C validator