Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaword Structured version   Visualization version   GIF version

Theorem nnaword 7991
 Description: Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaword ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))

Proof of Theorem nnaword
StepHypRef Expression
1 nnaord 7983 . . . 4 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵𝐴 ↔ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
213com12 1114 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵𝐴 ↔ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
32notbid 310 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ 𝐵𝐴 ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
4 nnord 7351 . . . 4 (𝐴 ∈ ω → Ord 𝐴)
5 nnord 7351 . . . 4 (𝐵 ∈ ω → Ord 𝐵)
6 ordtri1 6009 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
74, 5, 6syl2an 589 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
873adant3 1123 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
9 nnacl 7975 . . . . 5 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 +o 𝐴) ∈ ω)
109ancoms 452 . . . 4 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +o 𝐴) ∈ ω)
11103adant2 1122 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +o 𝐴) ∈ ω)
12 nnacl 7975 . . . . 5 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 +o 𝐵) ∈ ω)
1312ancoms 452 . . . 4 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +o 𝐵) ∈ ω)
14133adant1 1121 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +o 𝐵) ∈ ω)
15 nnord 7351 . . . 4 ((𝐶 +o 𝐴) ∈ ω → Ord (𝐶 +o 𝐴))
16 nnord 7351 . . . 4 ((𝐶 +o 𝐵) ∈ ω → Ord (𝐶 +o 𝐵))
17 ordtri1 6009 . . . 4 ((Ord (𝐶 +o 𝐴) ∧ Ord (𝐶 +o 𝐵)) → ((𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
1815, 16, 17syl2an 589 . . 3 (((𝐶 +o 𝐴) ∈ ω ∧ (𝐶 +o 𝐵) ∈ ω) → ((𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
1911, 14, 18syl2anc 579 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
203, 8, 193bitr4d 303 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 198   ∧ w3a 1071   ∈ wcel 2107   ⊆ wss 3792  Ord word 5975  (class class class)co 6922  ωcom 7343   +o coa 7840 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-oadd 7847 This theorem is referenced by:  nnacan  7992  nnaword1  7993
 Copyright terms: Public domain W3C validator