Proof of Theorem ovolicc2lem1
| Step | Hyp | Ref
| Expression |
| 1 | | ovolicc2.5 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 2 | | inss2 4220 |
. . . . . 6
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ ×
ℝ) |
| 3 | | fss 6733 |
. . . . . 6
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ))
⊆ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
| 4 | 1, 2, 3 | sylancl 586 |
. . . . 5
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
| 5 | | ovolicc2.8 |
. . . . . 6
⊢ (𝜑 → 𝐺:𝑈⟶ℕ) |
| 6 | 5 | ffvelcdmda 7085 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝐺‘𝑋) ∈ ℕ) |
| 7 | | fvco3 6989 |
. . . . 5
⊢ ((𝐹:ℕ⟶(ℝ ×
ℝ) ∧ (𝐺‘𝑋) ∈ ℕ) → (((,) ∘ 𝐹)‘(𝐺‘𝑋)) = ((,)‘(𝐹‘(𝐺‘𝑋)))) |
| 8 | 4, 6, 7 | syl2an2r 685 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑋)) = ((,)‘(𝐹‘(𝐺‘𝑋)))) |
| 9 | | ovolicc2.9 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) |
| 10 | 9 | ralrimiva 3133 |
. . . . 5
⊢ (𝜑 → ∀𝑡 ∈ 𝑈 (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) |
| 11 | | 2fveq3 6892 |
. . . . . . 7
⊢ (𝑡 = 𝑋 → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = (((,) ∘ 𝐹)‘(𝐺‘𝑋))) |
| 12 | | id 22 |
. . . . . . 7
⊢ (𝑡 = 𝑋 → 𝑡 = 𝑋) |
| 13 | 11, 12 | eqeq12d 2750 |
. . . . . 6
⊢ (𝑡 = 𝑋 → ((((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡 ↔ (((,) ∘ 𝐹)‘(𝐺‘𝑋)) = 𝑋)) |
| 14 | 13 | rspccva 3605 |
. . . . 5
⊢
((∀𝑡 ∈
𝑈 (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡 ∧ 𝑋 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑋)) = 𝑋) |
| 15 | 10, 14 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑋)) = 𝑋) |
| 16 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
| 17 | 16, 6 | ffvelcdmd 7086 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝐹‘(𝐺‘𝑋)) ∈ (ℝ ×
ℝ)) |
| 18 | | 1st2nd2 8036 |
. . . . . . 7
⊢ ((𝐹‘(𝐺‘𝑋)) ∈ (ℝ × ℝ) →
(𝐹‘(𝐺‘𝑋)) = 〈(1st ‘(𝐹‘(𝐺‘𝑋))), (2nd ‘(𝐹‘(𝐺‘𝑋)))〉) |
| 19 | 17, 18 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝐹‘(𝐺‘𝑋)) = 〈(1st ‘(𝐹‘(𝐺‘𝑋))), (2nd ‘(𝐹‘(𝐺‘𝑋)))〉) |
| 20 | 19 | fveq2d 6891 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → ((,)‘(𝐹‘(𝐺‘𝑋))) = ((,)‘〈(1st
‘(𝐹‘(𝐺‘𝑋))), (2nd ‘(𝐹‘(𝐺‘𝑋)))〉)) |
| 21 | | df-ov 7417 |
. . . . 5
⊢
((1st ‘(𝐹‘(𝐺‘𝑋)))(,)(2nd ‘(𝐹‘(𝐺‘𝑋)))) = ((,)‘〈(1st
‘(𝐹‘(𝐺‘𝑋))), (2nd ‘(𝐹‘(𝐺‘𝑋)))〉) |
| 22 | 20, 21 | eqtr4di 2787 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → ((,)‘(𝐹‘(𝐺‘𝑋))) = ((1st ‘(𝐹‘(𝐺‘𝑋)))(,)(2nd ‘(𝐹‘(𝐺‘𝑋))))) |
| 23 | 8, 15, 22 | 3eqtr3d 2777 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 = ((1st ‘(𝐹‘(𝐺‘𝑋)))(,)(2nd ‘(𝐹‘(𝐺‘𝑋))))) |
| 24 | 23 | eleq2d 2819 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑃 ∈ 𝑋 ↔ 𝑃 ∈ ((1st ‘(𝐹‘(𝐺‘𝑋)))(,)(2nd ‘(𝐹‘(𝐺‘𝑋)))))) |
| 25 | | xp1st 8029 |
. . . 4
⊢ ((𝐹‘(𝐺‘𝑋)) ∈ (ℝ × ℝ) →
(1st ‘(𝐹‘(𝐺‘𝑋))) ∈ ℝ) |
| 26 | 17, 25 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (1st ‘(𝐹‘(𝐺‘𝑋))) ∈ ℝ) |
| 27 | | xp2nd 8030 |
. . . 4
⊢ ((𝐹‘(𝐺‘𝑋)) ∈ (ℝ × ℝ) →
(2nd ‘(𝐹‘(𝐺‘𝑋))) ∈ ℝ) |
| 28 | 17, 27 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (2nd ‘(𝐹‘(𝐺‘𝑋))) ∈ ℝ) |
| 29 | | rexr 11290 |
. . . 4
⊢
((1st ‘(𝐹‘(𝐺‘𝑋))) ∈ ℝ → (1st
‘(𝐹‘(𝐺‘𝑋))) ∈
ℝ*) |
| 30 | | rexr 11290 |
. . . 4
⊢
((2nd ‘(𝐹‘(𝐺‘𝑋))) ∈ ℝ → (2nd
‘(𝐹‘(𝐺‘𝑋))) ∈
ℝ*) |
| 31 | | elioo2 13411 |
. . . 4
⊢
(((1st ‘(𝐹‘(𝐺‘𝑋))) ∈ ℝ* ∧
(2nd ‘(𝐹‘(𝐺‘𝑋))) ∈ ℝ*) →
(𝑃 ∈ ((1st
‘(𝐹‘(𝐺‘𝑋)))(,)(2nd ‘(𝐹‘(𝐺‘𝑋)))) ↔ (𝑃 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘𝑋))) < 𝑃 ∧ 𝑃 < (2nd ‘(𝐹‘(𝐺‘𝑋)))))) |
| 32 | 29, 30, 31 | syl2an 596 |
. . 3
⊢
(((1st ‘(𝐹‘(𝐺‘𝑋))) ∈ ℝ ∧ (2nd
‘(𝐹‘(𝐺‘𝑋))) ∈ ℝ) → (𝑃 ∈ ((1st
‘(𝐹‘(𝐺‘𝑋)))(,)(2nd ‘(𝐹‘(𝐺‘𝑋)))) ↔ (𝑃 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘𝑋))) < 𝑃 ∧ 𝑃 < (2nd ‘(𝐹‘(𝐺‘𝑋)))))) |
| 33 | 26, 28, 32 | syl2anc 584 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑃 ∈ ((1st ‘(𝐹‘(𝐺‘𝑋)))(,)(2nd ‘(𝐹‘(𝐺‘𝑋)))) ↔ (𝑃 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘𝑋))) < 𝑃 ∧ 𝑃 < (2nd ‘(𝐹‘(𝐺‘𝑋)))))) |
| 34 | 24, 33 | bitrd 279 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑃 ∈ 𝑋 ↔ (𝑃 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘𝑋))) < 𝑃 ∧ 𝑃 < (2nd ‘(𝐹‘(𝐺‘𝑋)))))) |