MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2lem1 Structured version   Visualization version   GIF version

Theorem ovolicc2lem1 25529
Description: Lemma for ovolicc2 25534. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc2.4 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolicc2.5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovolicc2.6 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
ovolicc2.7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
ovolicc2.8 (𝜑𝐺:𝑈⟶ℕ)
ovolicc2.9 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
Assertion
Ref Expression
ovolicc2lem1 ((𝜑𝑋𝑈) → (𝑃𝑋 ↔ (𝑃 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑋))) < 𝑃𝑃 < (2nd ‘(𝐹‘(𝐺𝑋))))))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐹   𝑡,𝐺   𝜑,𝑡   𝑡,𝑈   𝑡,𝑋
Allowed substitution hints:   𝑃(𝑡)   𝑆(𝑡)

Proof of Theorem ovolicc2lem1
StepHypRef Expression
1 ovolicc2.5 . . . . . 6 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 inss2 4230 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
3 fss 6743 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ × ℝ))
41, 2, 3sylancl 584 . . . . 5 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
5 ovolicc2.8 . . . . . 6 (𝜑𝐺:𝑈⟶ℕ)
65ffvelcdmda 7097 . . . . 5 ((𝜑𝑋𝑈) → (𝐺𝑋) ∈ ℕ)
7 fvco3 7000 . . . . 5 ((𝐹:ℕ⟶(ℝ × ℝ) ∧ (𝐺𝑋) ∈ ℕ) → (((,) ∘ 𝐹)‘(𝐺𝑋)) = ((,)‘(𝐹‘(𝐺𝑋))))
84, 6, 7syl2an2r 683 . . . 4 ((𝜑𝑋𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑋)) = ((,)‘(𝐹‘(𝐺𝑋))))
9 ovolicc2.9 . . . . . 6 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
109ralrimiva 3135 . . . . 5 (𝜑 → ∀𝑡𝑈 (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
11 2fveq3 6905 . . . . . . 7 (𝑡 = 𝑋 → (((,) ∘ 𝐹)‘(𝐺𝑡)) = (((,) ∘ 𝐹)‘(𝐺𝑋)))
12 id 22 . . . . . . 7 (𝑡 = 𝑋𝑡 = 𝑋)
1311, 12eqeq12d 2741 . . . . . 6 (𝑡 = 𝑋 → ((((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡 ↔ (((,) ∘ 𝐹)‘(𝐺𝑋)) = 𝑋))
1413rspccva 3606 . . . . 5 ((∀𝑡𝑈 (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡𝑋𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑋)) = 𝑋)
1510, 14sylan 578 . . . 4 ((𝜑𝑋𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑋)) = 𝑋)
164adantr 479 . . . . . . . 8 ((𝜑𝑋𝑈) → 𝐹:ℕ⟶(ℝ × ℝ))
1716, 6ffvelcdmd 7098 . . . . . . 7 ((𝜑𝑋𝑈) → (𝐹‘(𝐺𝑋)) ∈ (ℝ × ℝ))
18 1st2nd2 8041 . . . . . . 7 ((𝐹‘(𝐺𝑋)) ∈ (ℝ × ℝ) → (𝐹‘(𝐺𝑋)) = ⟨(1st ‘(𝐹‘(𝐺𝑋))), (2nd ‘(𝐹‘(𝐺𝑋)))⟩)
1917, 18syl 17 . . . . . 6 ((𝜑𝑋𝑈) → (𝐹‘(𝐺𝑋)) = ⟨(1st ‘(𝐹‘(𝐺𝑋))), (2nd ‘(𝐹‘(𝐺𝑋)))⟩)
2019fveq2d 6904 . . . . 5 ((𝜑𝑋𝑈) → ((,)‘(𝐹‘(𝐺𝑋))) = ((,)‘⟨(1st ‘(𝐹‘(𝐺𝑋))), (2nd ‘(𝐹‘(𝐺𝑋)))⟩))
21 df-ov 7426 . . . . 5 ((1st ‘(𝐹‘(𝐺𝑋)))(,)(2nd ‘(𝐹‘(𝐺𝑋)))) = ((,)‘⟨(1st ‘(𝐹‘(𝐺𝑋))), (2nd ‘(𝐹‘(𝐺𝑋)))⟩)
2220, 21eqtr4di 2783 . . . 4 ((𝜑𝑋𝑈) → ((,)‘(𝐹‘(𝐺𝑋))) = ((1st ‘(𝐹‘(𝐺𝑋)))(,)(2nd ‘(𝐹‘(𝐺𝑋)))))
238, 15, 223eqtr3d 2773 . . 3 ((𝜑𝑋𝑈) → 𝑋 = ((1st ‘(𝐹‘(𝐺𝑋)))(,)(2nd ‘(𝐹‘(𝐺𝑋)))))
2423eleq2d 2811 . 2 ((𝜑𝑋𝑈) → (𝑃𝑋𝑃 ∈ ((1st ‘(𝐹‘(𝐺𝑋)))(,)(2nd ‘(𝐹‘(𝐺𝑋))))))
25 xp1st 8034 . . . 4 ((𝐹‘(𝐺𝑋)) ∈ (ℝ × ℝ) → (1st ‘(𝐹‘(𝐺𝑋))) ∈ ℝ)
2617, 25syl 17 . . 3 ((𝜑𝑋𝑈) → (1st ‘(𝐹‘(𝐺𝑋))) ∈ ℝ)
27 xp2nd 8035 . . . 4 ((𝐹‘(𝐺𝑋)) ∈ (ℝ × ℝ) → (2nd ‘(𝐹‘(𝐺𝑋))) ∈ ℝ)
2817, 27syl 17 . . 3 ((𝜑𝑋𝑈) → (2nd ‘(𝐹‘(𝐺𝑋))) ∈ ℝ)
29 rexr 11306 . . . 4 ((1st ‘(𝐹‘(𝐺𝑋))) ∈ ℝ → (1st ‘(𝐹‘(𝐺𝑋))) ∈ ℝ*)
30 rexr 11306 . . . 4 ((2nd ‘(𝐹‘(𝐺𝑋))) ∈ ℝ → (2nd ‘(𝐹‘(𝐺𝑋))) ∈ ℝ*)
31 elioo2 13414 . . . 4 (((1st ‘(𝐹‘(𝐺𝑋))) ∈ ℝ* ∧ (2nd ‘(𝐹‘(𝐺𝑋))) ∈ ℝ*) → (𝑃 ∈ ((1st ‘(𝐹‘(𝐺𝑋)))(,)(2nd ‘(𝐹‘(𝐺𝑋)))) ↔ (𝑃 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑋))) < 𝑃𝑃 < (2nd ‘(𝐹‘(𝐺𝑋))))))
3229, 30, 31syl2an 594 . . 3 (((1st ‘(𝐹‘(𝐺𝑋))) ∈ ℝ ∧ (2nd ‘(𝐹‘(𝐺𝑋))) ∈ ℝ) → (𝑃 ∈ ((1st ‘(𝐹‘(𝐺𝑋)))(,)(2nd ‘(𝐹‘(𝐺𝑋)))) ↔ (𝑃 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑋))) < 𝑃𝑃 < (2nd ‘(𝐹‘(𝐺𝑋))))))
3326, 28, 32syl2anc 582 . 2 ((𝜑𝑋𝑈) → (𝑃 ∈ ((1st ‘(𝐹‘(𝐺𝑋)))(,)(2nd ‘(𝐹‘(𝐺𝑋)))) ↔ (𝑃 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑋))) < 𝑃𝑃 < (2nd ‘(𝐹‘(𝐺𝑋))))))
3424, 33bitrd 278 1 ((𝜑𝑋𝑈) → (𝑃𝑋 ↔ (𝑃 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑋))) < 𝑃𝑃 < (2nd ‘(𝐹‘(𝐺𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  cin 3945  wss 3946  𝒫 cpw 4606  cop 4638   cuni 4912   class class class wbr 5152   × cxp 5679  ran crn 5682  ccom 5685  wf 6549  cfv 6553  (class class class)co 7423  1st c1st 8000  2nd c2nd 8001  Fincfn 8973  cr 11153  1c1 11155   + caddc 11157  *cxr 11293   < clt 11294  cle 11295  cmin 11490  cn 12259  (,)cioo 13373  [,]cicc 13376  seqcseq 14016  abscabs 15234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-pre-lttri 11228  ax-pre-lttrn 11229
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-po 5593  df-so 5594  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7426  df-oprab 7427  df-mpo 7428  df-1st 8002  df-2nd 8003  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-ioo 13377
This theorem is referenced by:  ovolicc2lem2  25530  ovolicc2lem3  25531  ovolicc2lem4  25532
  Copyright terms: Public domain W3C validator