MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2lem1 Structured version   Visualization version   GIF version

Theorem ovolicc2lem1 24681
Description: Lemma for ovolicc2 24686. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc2.4 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolicc2.5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovolicc2.6 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
ovolicc2.7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
ovolicc2.8 (𝜑𝐺:𝑈⟶ℕ)
ovolicc2.9 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
Assertion
Ref Expression
ovolicc2lem1 ((𝜑𝑋𝑈) → (𝑃𝑋 ↔ (𝑃 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑋))) < 𝑃𝑃 < (2nd ‘(𝐹‘(𝐺𝑋))))))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐹   𝑡,𝐺   𝜑,𝑡   𝑡,𝑈   𝑡,𝑋
Allowed substitution hints:   𝑃(𝑡)   𝑆(𝑡)

Proof of Theorem ovolicc2lem1
StepHypRef Expression
1 ovolicc2.5 . . . . . 6 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 inss2 4163 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
3 fss 6617 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ × ℝ))
41, 2, 3sylancl 586 . . . . 5 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
5 ovolicc2.8 . . . . . 6 (𝜑𝐺:𝑈⟶ℕ)
65ffvelrnda 6961 . . . . 5 ((𝜑𝑋𝑈) → (𝐺𝑋) ∈ ℕ)
7 fvco3 6867 . . . . 5 ((𝐹:ℕ⟶(ℝ × ℝ) ∧ (𝐺𝑋) ∈ ℕ) → (((,) ∘ 𝐹)‘(𝐺𝑋)) = ((,)‘(𝐹‘(𝐺𝑋))))
84, 6, 7syl2an2r 682 . . . 4 ((𝜑𝑋𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑋)) = ((,)‘(𝐹‘(𝐺𝑋))))
9 ovolicc2.9 . . . . . 6 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
109ralrimiva 3103 . . . . 5 (𝜑 → ∀𝑡𝑈 (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
11 2fveq3 6779 . . . . . . 7 (𝑡 = 𝑋 → (((,) ∘ 𝐹)‘(𝐺𝑡)) = (((,) ∘ 𝐹)‘(𝐺𝑋)))
12 id 22 . . . . . . 7 (𝑡 = 𝑋𝑡 = 𝑋)
1311, 12eqeq12d 2754 . . . . . 6 (𝑡 = 𝑋 → ((((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡 ↔ (((,) ∘ 𝐹)‘(𝐺𝑋)) = 𝑋))
1413rspccva 3560 . . . . 5 ((∀𝑡𝑈 (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡𝑋𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑋)) = 𝑋)
1510, 14sylan 580 . . . 4 ((𝜑𝑋𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑋)) = 𝑋)
164adantr 481 . . . . . . . 8 ((𝜑𝑋𝑈) → 𝐹:ℕ⟶(ℝ × ℝ))
1716, 6ffvelrnd 6962 . . . . . . 7 ((𝜑𝑋𝑈) → (𝐹‘(𝐺𝑋)) ∈ (ℝ × ℝ))
18 1st2nd2 7870 . . . . . . 7 ((𝐹‘(𝐺𝑋)) ∈ (ℝ × ℝ) → (𝐹‘(𝐺𝑋)) = ⟨(1st ‘(𝐹‘(𝐺𝑋))), (2nd ‘(𝐹‘(𝐺𝑋)))⟩)
1917, 18syl 17 . . . . . 6 ((𝜑𝑋𝑈) → (𝐹‘(𝐺𝑋)) = ⟨(1st ‘(𝐹‘(𝐺𝑋))), (2nd ‘(𝐹‘(𝐺𝑋)))⟩)
2019fveq2d 6778 . . . . 5 ((𝜑𝑋𝑈) → ((,)‘(𝐹‘(𝐺𝑋))) = ((,)‘⟨(1st ‘(𝐹‘(𝐺𝑋))), (2nd ‘(𝐹‘(𝐺𝑋)))⟩))
21 df-ov 7278 . . . . 5 ((1st ‘(𝐹‘(𝐺𝑋)))(,)(2nd ‘(𝐹‘(𝐺𝑋)))) = ((,)‘⟨(1st ‘(𝐹‘(𝐺𝑋))), (2nd ‘(𝐹‘(𝐺𝑋)))⟩)
2220, 21eqtr4di 2796 . . . 4 ((𝜑𝑋𝑈) → ((,)‘(𝐹‘(𝐺𝑋))) = ((1st ‘(𝐹‘(𝐺𝑋)))(,)(2nd ‘(𝐹‘(𝐺𝑋)))))
238, 15, 223eqtr3d 2786 . . 3 ((𝜑𝑋𝑈) → 𝑋 = ((1st ‘(𝐹‘(𝐺𝑋)))(,)(2nd ‘(𝐹‘(𝐺𝑋)))))
2423eleq2d 2824 . 2 ((𝜑𝑋𝑈) → (𝑃𝑋𝑃 ∈ ((1st ‘(𝐹‘(𝐺𝑋)))(,)(2nd ‘(𝐹‘(𝐺𝑋))))))
25 xp1st 7863 . . . 4 ((𝐹‘(𝐺𝑋)) ∈ (ℝ × ℝ) → (1st ‘(𝐹‘(𝐺𝑋))) ∈ ℝ)
2617, 25syl 17 . . 3 ((𝜑𝑋𝑈) → (1st ‘(𝐹‘(𝐺𝑋))) ∈ ℝ)
27 xp2nd 7864 . . . 4 ((𝐹‘(𝐺𝑋)) ∈ (ℝ × ℝ) → (2nd ‘(𝐹‘(𝐺𝑋))) ∈ ℝ)
2817, 27syl 17 . . 3 ((𝜑𝑋𝑈) → (2nd ‘(𝐹‘(𝐺𝑋))) ∈ ℝ)
29 rexr 11021 . . . 4 ((1st ‘(𝐹‘(𝐺𝑋))) ∈ ℝ → (1st ‘(𝐹‘(𝐺𝑋))) ∈ ℝ*)
30 rexr 11021 . . . 4 ((2nd ‘(𝐹‘(𝐺𝑋))) ∈ ℝ → (2nd ‘(𝐹‘(𝐺𝑋))) ∈ ℝ*)
31 elioo2 13120 . . . 4 (((1st ‘(𝐹‘(𝐺𝑋))) ∈ ℝ* ∧ (2nd ‘(𝐹‘(𝐺𝑋))) ∈ ℝ*) → (𝑃 ∈ ((1st ‘(𝐹‘(𝐺𝑋)))(,)(2nd ‘(𝐹‘(𝐺𝑋)))) ↔ (𝑃 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑋))) < 𝑃𝑃 < (2nd ‘(𝐹‘(𝐺𝑋))))))
3229, 30, 31syl2an 596 . . 3 (((1st ‘(𝐹‘(𝐺𝑋))) ∈ ℝ ∧ (2nd ‘(𝐹‘(𝐺𝑋))) ∈ ℝ) → (𝑃 ∈ ((1st ‘(𝐹‘(𝐺𝑋)))(,)(2nd ‘(𝐹‘(𝐺𝑋)))) ↔ (𝑃 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑋))) < 𝑃𝑃 < (2nd ‘(𝐹‘(𝐺𝑋))))))
3326, 28, 32syl2anc 584 . 2 ((𝜑𝑋𝑈) → (𝑃 ∈ ((1st ‘(𝐹‘(𝐺𝑋)))(,)(2nd ‘(𝐹‘(𝐺𝑋)))) ↔ (𝑃 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑋))) < 𝑃𝑃 < (2nd ‘(𝐹‘(𝐺𝑋))))))
3424, 33bitrd 278 1 ((𝜑𝑋𝑈) → (𝑃𝑋 ↔ (𝑃 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑋))) < 𝑃𝑃 < (2nd ‘(𝐹‘(𝐺𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cin 3886  wss 3887  𝒫 cpw 4533  cop 4567   cuni 4839   class class class wbr 5074   × cxp 5587  ran crn 5590  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  Fincfn 8733  cr 10870  1c1 10872   + caddc 10874  *cxr 11008   < clt 11009  cle 11010  cmin 11205  cn 11973  (,)cioo 13079  [,]cicc 13082  seqcseq 13721  abscabs 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ioo 13083
This theorem is referenced by:  ovolicc2lem2  24682  ovolicc2lem3  24683  ovolicc2lem4  24684
  Copyright terms: Public domain W3C validator