| Step | Hyp | Ref
| Expression |
| 1 | | ovolicc.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 2 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℝ) |
| 3 | | ovolicc2.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 4 | | inss2 4220 |
. . . . . . . . 9
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ ×
ℝ) |
| 5 | | fss 6733 |
. . . . . . . . 9
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ))
⊆ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
| 6 | 3, 4, 5 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
| 7 | 6 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
| 8 | | ovolicc2.8 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:𝑈⟶ℕ) |
| 9 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐺:𝑈⟶ℕ) |
| 10 | | nnuz 12904 |
. . . . . . . . . . . 12
⊢ ℕ =
(ℤ≥‘1) |
| 11 | | ovolicc2.15 |
. . . . . . . . . . . 12
⊢ 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ ×
{𝐶})) |
| 12 | | 1zzd 12632 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℤ) |
| 13 | | ovolicc2.14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ 𝑇) |
| 14 | | ovolicc2.11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻:𝑇⟶𝑇) |
| 15 | 10, 11, 12, 13, 14 | algrf 16593 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾:ℕ⟶𝑇) |
| 16 | 15 | ffvelcdmda 7085 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐾‘𝑁) ∈ 𝑇) |
| 17 | | ineq1 4195 |
. . . . . . . . . . . 12
⊢ (𝑢 = (𝐾‘𝑁) → (𝑢 ∩ (𝐴[,]𝐵)) = ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) |
| 18 | 17 | neeq1d 2990 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝐾‘𝑁) → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅)) |
| 19 | | ovolicc2.10 |
. . . . . . . . . . 11
⊢ 𝑇 = {𝑢 ∈ 𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} |
| 20 | 18, 19 | elrab2 3679 |
. . . . . . . . . 10
⊢ ((𝐾‘𝑁) ∈ 𝑇 ↔ ((𝐾‘𝑁) ∈ 𝑈 ∧ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅)) |
| 21 | 16, 20 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐾‘𝑁) ∈ 𝑈 ∧ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅)) |
| 22 | 21 | simpld 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐾‘𝑁) ∈ 𝑈) |
| 23 | 9, 22 | ffvelcdmd 7086 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐺‘(𝐾‘𝑁)) ∈ ℕ) |
| 24 | 7, 23 | ffvelcdmd 7086 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝐺‘(𝐾‘𝑁))) ∈ (ℝ ×
ℝ)) |
| 25 | | xp2nd 8030 |
. . . . . 6
⊢ ((𝐹‘(𝐺‘(𝐾‘𝑁))) ∈ (ℝ × ℝ) →
(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) ∈ ℝ) |
| 26 | 24, 25 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) ∈ ℝ) |
| 27 | 2, 26 | ltnled 11391 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) ↔ ¬ (2nd
‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) ≤ 𝐵)) |
| 28 | | simprl 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) → 𝑁 ∈ ℕ) |
| 29 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) → 𝐵 ∈ ℝ) |
| 30 | 21 | adantrr 717 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) → ((𝐾‘𝑁) ∈ 𝑈 ∧ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅)) |
| 31 | 30 | simprd 495 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) → ((𝐾‘𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅) |
| 32 | | n0 4335 |
. . . . . . . . 9
⊢ (((𝐾‘𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) |
| 33 | 31, 32 | sylib 218 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) → ∃𝑥 𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) |
| 34 | | xp1st 8029 |
. . . . . . . . . . . 12
⊢ ((𝐹‘(𝐺‘(𝐾‘𝑁))) ∈ (ℝ × ℝ) →
(1st ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) ∈ ℝ) |
| 35 | 24, 34 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (1st
‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) ∈ ℝ) |
| 36 | 35 | adantrr 717 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) → (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) ∈ ℝ) |
| 37 | 36 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) ∧ 𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) → (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) ∈ ℝ) |
| 38 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) ∧ 𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) |
| 39 | | elin 3949 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵)) ↔ (𝑥 ∈ (𝐾‘𝑁) ∧ 𝑥 ∈ (𝐴[,]𝐵))) |
| 40 | 38, 39 | sylib 218 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) ∧ 𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ (𝐾‘𝑁) ∧ 𝑥 ∈ (𝐴[,]𝐵))) |
| 41 | 40 | simprd 495 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) ∧ 𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 42 | | ovolicc.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 43 | | elicc2 13435 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
| 44 | 42, 1, 43 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
| 45 | 44 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) ∧ 𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
| 46 | 41, 45 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) ∧ 𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 47 | 46 | simp1d 1142 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) ∧ 𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ) |
| 48 | 1 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) ∧ 𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) → 𝐵 ∈ ℝ) |
| 49 | 40 | simpld 494 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) ∧ 𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐾‘𝑁)) |
| 50 | 30 | simpld 494 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) → (𝐾‘𝑁) ∈ 𝑈) |
| 51 | | ovolicc.3 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 52 | | ovolicc2.4 |
. . . . . . . . . . . . . 14
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
| 53 | | ovolicc2.6 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) |
| 54 | | ovolicc2.7 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) |
| 55 | | ovolicc2.9 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) |
| 56 | 42, 1, 51, 52, 3, 53, 54, 8, 55 | ovolicc2lem1 25507 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐾‘𝑁) ∈ 𝑈) → (𝑥 ∈ (𝐾‘𝑁) ↔ (𝑥 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁))))))) |
| 57 | 50, 56 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) → (𝑥 ∈ (𝐾‘𝑁) ↔ (𝑥 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁))))))) |
| 58 | 57 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) ∧ 𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ (𝐾‘𝑁) ↔ (𝑥 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁))))))) |
| 59 | 49, 58 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) ∧ 𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) |
| 60 | 59 | simp2d 1143 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) ∧ 𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) → (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) < 𝑥) |
| 61 | 46 | simp3d 1144 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) ∧ 𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ≤ 𝐵) |
| 62 | 37, 47, 48, 60, 61 | ltletrd 11404 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) ∧ 𝑥 ∈ ((𝐾‘𝑁) ∩ (𝐴[,]𝐵))) → (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) < 𝐵) |
| 63 | 33, 62 | exlimddv 1934 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) → (1st ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) < 𝐵) |
| 64 | | simprr 772 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) → 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁))))) |
| 65 | 42, 1, 51, 52, 3, 53, 54, 8, 55 | ovolicc2lem1 25507 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾‘𝑁) ∈ 𝑈) → (𝐵 ∈ (𝐾‘𝑁) ↔ (𝐵 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) < 𝐵 ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁))))))) |
| 66 | 50, 65 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) → (𝐵 ∈ (𝐾‘𝑁) ↔ (𝐵 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) < 𝐵 ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁))))))) |
| 67 | 29, 63, 64, 66 | mpbir3and 1342 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) → 𝐵 ∈ (𝐾‘𝑁)) |
| 68 | | fveq2 6887 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝐾‘𝑛) = (𝐾‘𝑁)) |
| 69 | 68 | eleq2d 2819 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (𝐵 ∈ (𝐾‘𝑛) ↔ 𝐵 ∈ (𝐾‘𝑁))) |
| 70 | | ovolicc2.16 |
. . . . . . 7
⊢ 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾‘𝑛)} |
| 71 | 69, 70 | elrab2 3679 |
. . . . . 6
⊢ (𝑁 ∈ 𝑊 ↔ (𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝐾‘𝑁))) |
| 72 | 28, 67, 71 | sylanbrc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))))) → 𝑁 ∈ 𝑊) |
| 73 | 72 | expr 456 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) → 𝑁 ∈ 𝑊)) |
| 74 | 27, 73 | sylbird 260 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (¬
(2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) ≤ 𝐵 → 𝑁 ∈ 𝑊)) |
| 75 | 74 | con1d 145 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (¬ 𝑁 ∈ 𝑊 → (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) ≤ 𝐵)) |
| 76 | 75 | impr 454 |
1
⊢ ((𝜑 ∧ (𝑁 ∈ ℕ ∧ ¬ 𝑁 ∈ 𝑊)) → (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) ≤ 𝐵) |