MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2lem2 Structured version   Visualization version   GIF version

Theorem ovolicc2lem2 25034
Description: Lemma for ovolicc2 25038. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1 (πœ‘ β†’ 𝐴 ∈ ℝ)
ovolicc.2 (πœ‘ β†’ 𝐡 ∈ ℝ)
ovolicc.3 (πœ‘ β†’ 𝐴 ≀ 𝐡)
ovolicc2.4 𝑆 = seq1( + , ((abs ∘ βˆ’ ) ∘ 𝐹))
ovolicc2.5 (πœ‘ β†’ 𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)))
ovolicc2.6 (πœ‘ β†’ π‘ˆ ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
ovolicc2.7 (πœ‘ β†’ (𝐴[,]𝐡) βŠ† βˆͺ π‘ˆ)
ovolicc2.8 (πœ‘ β†’ 𝐺:π‘ˆβŸΆβ„•)
ovolicc2.9 ((πœ‘ ∧ 𝑑 ∈ π‘ˆ) β†’ (((,) ∘ 𝐹)β€˜(πΊβ€˜π‘‘)) = 𝑑)
ovolicc2.10 𝑇 = {𝑒 ∈ π‘ˆ ∣ (𝑒 ∩ (𝐴[,]𝐡)) β‰  βˆ…}
ovolicc2.11 (πœ‘ β†’ 𝐻:π‘‡βŸΆπ‘‡)
ovolicc2.12 ((πœ‘ ∧ 𝑑 ∈ 𝑇) β†’ if((2nd β€˜(πΉβ€˜(πΊβ€˜π‘‘))) ≀ 𝐡, (2nd β€˜(πΉβ€˜(πΊβ€˜π‘‘))), 𝐡) ∈ (π»β€˜π‘‘))
ovolicc2.13 (πœ‘ β†’ 𝐴 ∈ 𝐢)
ovolicc2.14 (πœ‘ β†’ 𝐢 ∈ 𝑇)
ovolicc2.15 𝐾 = seq1((𝐻 ∘ 1st ), (β„• Γ— {𝐢}))
ovolicc2.16 π‘Š = {𝑛 ∈ β„• ∣ 𝐡 ∈ (πΎβ€˜π‘›)}
Assertion
Ref Expression
ovolicc2lem2 ((πœ‘ ∧ (𝑁 ∈ β„• ∧ Β¬ 𝑁 ∈ π‘Š)) β†’ (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) ≀ 𝐡)
Distinct variable groups:   𝑑,𝑛,𝑒,𝐴   𝐡,𝑛,𝑑,𝑒   𝑑,𝐻   𝐢,𝑛,𝑑   𝑛,𝐹,𝑑   𝑛,𝐾,𝑑,𝑒   𝑛,𝐺,𝑑   𝑛,π‘Š   πœ‘,𝑛,𝑑   𝑇,𝑛,𝑑   𝑛,𝑁,𝑑,𝑒   π‘ˆ,𝑛,𝑑,𝑒
Allowed substitution hints:   πœ‘(𝑒)   𝐢(𝑒)   𝑆(𝑒,𝑑,𝑛)   𝑇(𝑒)   𝐹(𝑒)   𝐺(𝑒)   𝐻(𝑒,𝑛)   π‘Š(𝑒,𝑑)

Proof of Theorem ovolicc2lem2
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 ovolicc.2 . . . . . 6 (πœ‘ β†’ 𝐡 ∈ ℝ)
21adantr 481 . . . . 5 ((πœ‘ ∧ 𝑁 ∈ β„•) β†’ 𝐡 ∈ ℝ)
3 ovolicc2.5 . . . . . . . . 9 (πœ‘ β†’ 𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)))
4 inss2 4229 . . . . . . . . 9 ( ≀ ∩ (ℝ Γ— ℝ)) βŠ† (ℝ Γ— ℝ)
5 fss 6734 . . . . . . . . 9 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ ( ≀ ∩ (ℝ Γ— ℝ)) βŠ† (ℝ Γ— ℝ)) β†’ 𝐹:β„•βŸΆ(ℝ Γ— ℝ))
63, 4, 5sylancl 586 . . . . . . . 8 (πœ‘ β†’ 𝐹:β„•βŸΆ(ℝ Γ— ℝ))
76adantr 481 . . . . . . 7 ((πœ‘ ∧ 𝑁 ∈ β„•) β†’ 𝐹:β„•βŸΆ(ℝ Γ— ℝ))
8 ovolicc2.8 . . . . . . . . 9 (πœ‘ β†’ 𝐺:π‘ˆβŸΆβ„•)
98adantr 481 . . . . . . . 8 ((πœ‘ ∧ 𝑁 ∈ β„•) β†’ 𝐺:π‘ˆβŸΆβ„•)
10 nnuz 12864 . . . . . . . . . . . 12 β„• = (β„€β‰₯β€˜1)
11 ovolicc2.15 . . . . . . . . . . . 12 𝐾 = seq1((𝐻 ∘ 1st ), (β„• Γ— {𝐢}))
12 1zzd 12592 . . . . . . . . . . . 12 (πœ‘ β†’ 1 ∈ β„€)
13 ovolicc2.14 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐢 ∈ 𝑇)
14 ovolicc2.11 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐻:π‘‡βŸΆπ‘‡)
1510, 11, 12, 13, 14algrf 16509 . . . . . . . . . . 11 (πœ‘ β†’ 𝐾:β„•βŸΆπ‘‡)
1615ffvelcdmda 7086 . . . . . . . . . 10 ((πœ‘ ∧ 𝑁 ∈ β„•) β†’ (πΎβ€˜π‘) ∈ 𝑇)
17 ineq1 4205 . . . . . . . . . . . 12 (𝑒 = (πΎβ€˜π‘) β†’ (𝑒 ∩ (𝐴[,]𝐡)) = ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡)))
1817neeq1d 3000 . . . . . . . . . . 11 (𝑒 = (πΎβ€˜π‘) β†’ ((𝑒 ∩ (𝐴[,]𝐡)) β‰  βˆ… ↔ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡)) β‰  βˆ…))
19 ovolicc2.10 . . . . . . . . . . 11 𝑇 = {𝑒 ∈ π‘ˆ ∣ (𝑒 ∩ (𝐴[,]𝐡)) β‰  βˆ…}
2018, 19elrab2 3686 . . . . . . . . . 10 ((πΎβ€˜π‘) ∈ 𝑇 ↔ ((πΎβ€˜π‘) ∈ π‘ˆ ∧ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡)) β‰  βˆ…))
2116, 20sylib 217 . . . . . . . . 9 ((πœ‘ ∧ 𝑁 ∈ β„•) β†’ ((πΎβ€˜π‘) ∈ π‘ˆ ∧ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡)) β‰  βˆ…))
2221simpld 495 . . . . . . . 8 ((πœ‘ ∧ 𝑁 ∈ β„•) β†’ (πΎβ€˜π‘) ∈ π‘ˆ)
239, 22ffvelcdmd 7087 . . . . . . 7 ((πœ‘ ∧ 𝑁 ∈ β„•) β†’ (πΊβ€˜(πΎβ€˜π‘)) ∈ β„•)
247, 23ffvelcdmd 7087 . . . . . 6 ((πœ‘ ∧ 𝑁 ∈ β„•) β†’ (πΉβ€˜(πΊβ€˜(πΎβ€˜π‘))) ∈ (ℝ Γ— ℝ))
25 xp2nd 8007 . . . . . 6 ((πΉβ€˜(πΊβ€˜(πΎβ€˜π‘))) ∈ (ℝ Γ— ℝ) β†’ (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) ∈ ℝ)
2624, 25syl 17 . . . . 5 ((πœ‘ ∧ 𝑁 ∈ β„•) β†’ (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) ∈ ℝ)
272, 26ltnled 11360 . . . 4 ((πœ‘ ∧ 𝑁 ∈ β„•) β†’ (𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) ↔ Β¬ (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) ≀ 𝐡))
28 simprl 769 . . . . . 6 ((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) β†’ 𝑁 ∈ β„•)
291adantr 481 . . . . . . 7 ((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) β†’ 𝐡 ∈ ℝ)
3021adantrr 715 . . . . . . . . . 10 ((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) β†’ ((πΎβ€˜π‘) ∈ π‘ˆ ∧ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡)) β‰  βˆ…))
3130simprd 496 . . . . . . . . 9 ((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) β†’ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡)) β‰  βˆ…)
32 n0 4346 . . . . . . . . 9 (((πΎβ€˜π‘) ∩ (𝐴[,]𝐡)) β‰  βˆ… ↔ βˆƒπ‘₯ π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡)))
3331, 32sylib 217 . . . . . . . 8 ((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) β†’ βˆƒπ‘₯ π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡)))
34 xp1st 8006 . . . . . . . . . . . 12 ((πΉβ€˜(πΊβ€˜(πΎβ€˜π‘))) ∈ (ℝ Γ— ℝ) β†’ (1st β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) ∈ ℝ)
3524, 34syl 17 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑁 ∈ β„•) β†’ (1st β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) ∈ ℝ)
3635adantrr 715 . . . . . . . . . 10 ((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) β†’ (1st β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) ∈ ℝ)
3736adantr 481 . . . . . . . . 9 (((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) ∧ π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡))) β†’ (1st β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) ∈ ℝ)
38 simpr 485 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) ∧ π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡))) β†’ π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡)))
39 elin 3964 . . . . . . . . . . . . 13 (π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡)) ↔ (π‘₯ ∈ (πΎβ€˜π‘) ∧ π‘₯ ∈ (𝐴[,]𝐡)))
4038, 39sylib 217 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) ∧ π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡))) β†’ (π‘₯ ∈ (πΎβ€˜π‘) ∧ π‘₯ ∈ (𝐴[,]𝐡)))
4140simprd 496 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) ∧ π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡))) β†’ π‘₯ ∈ (𝐴[,]𝐡))
42 ovolicc.1 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐴 ∈ ℝ)
43 elicc2 13388 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↔ (π‘₯ ∈ ℝ ∧ 𝐴 ≀ π‘₯ ∧ π‘₯ ≀ 𝐡)))
4442, 1, 43syl2anc 584 . . . . . . . . . . . 12 (πœ‘ β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↔ (π‘₯ ∈ ℝ ∧ 𝐴 ≀ π‘₯ ∧ π‘₯ ≀ 𝐡)))
4544ad2antrr 724 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) ∧ π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡))) β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↔ (π‘₯ ∈ ℝ ∧ 𝐴 ≀ π‘₯ ∧ π‘₯ ≀ 𝐡)))
4641, 45mpbid 231 . . . . . . . . . 10 (((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) ∧ π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡))) β†’ (π‘₯ ∈ ℝ ∧ 𝐴 ≀ π‘₯ ∧ π‘₯ ≀ 𝐡))
4746simp1d 1142 . . . . . . . . 9 (((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) ∧ π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡))) β†’ π‘₯ ∈ ℝ)
481ad2antrr 724 . . . . . . . . 9 (((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) ∧ π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡))) β†’ 𝐡 ∈ ℝ)
4940simpld 495 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) ∧ π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡))) β†’ π‘₯ ∈ (πΎβ€˜π‘))
5030simpld 495 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) β†’ (πΎβ€˜π‘) ∈ π‘ˆ)
51 ovolicc.3 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐴 ≀ 𝐡)
52 ovolicc2.4 . . . . . . . . . . . . . 14 𝑆 = seq1( + , ((abs ∘ βˆ’ ) ∘ 𝐹))
53 ovolicc2.6 . . . . . . . . . . . . . 14 (πœ‘ β†’ π‘ˆ ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
54 ovolicc2.7 . . . . . . . . . . . . . 14 (πœ‘ β†’ (𝐴[,]𝐡) βŠ† βˆͺ π‘ˆ)
55 ovolicc2.9 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑑 ∈ π‘ˆ) β†’ (((,) ∘ 𝐹)β€˜(πΊβ€˜π‘‘)) = 𝑑)
5642, 1, 51, 52, 3, 53, 54, 8, 55ovolicc2lem1 25033 . . . . . . . . . . . . 13 ((πœ‘ ∧ (πΎβ€˜π‘) ∈ π‘ˆ) β†’ (π‘₯ ∈ (πΎβ€˜π‘) ↔ (π‘₯ ∈ ℝ ∧ (1st β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) < π‘₯ ∧ π‘₯ < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))))
5750, 56syldan 591 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) β†’ (π‘₯ ∈ (πΎβ€˜π‘) ↔ (π‘₯ ∈ ℝ ∧ (1st β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) < π‘₯ ∧ π‘₯ < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))))
5857adantr 481 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) ∧ π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡))) β†’ (π‘₯ ∈ (πΎβ€˜π‘) ↔ (π‘₯ ∈ ℝ ∧ (1st β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) < π‘₯ ∧ π‘₯ < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))))
5949, 58mpbid 231 . . . . . . . . . 10 (((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) ∧ π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡))) β†’ (π‘₯ ∈ ℝ ∧ (1st β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) < π‘₯ ∧ π‘₯ < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘))))))
6059simp2d 1143 . . . . . . . . 9 (((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) ∧ π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡))) β†’ (1st β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) < π‘₯)
6146simp3d 1144 . . . . . . . . 9 (((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) ∧ π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡))) β†’ π‘₯ ≀ 𝐡)
6237, 47, 48, 60, 61ltletrd 11373 . . . . . . . 8 (((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) ∧ π‘₯ ∈ ((πΎβ€˜π‘) ∩ (𝐴[,]𝐡))) β†’ (1st β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) < 𝐡)
6333, 62exlimddv 1938 . . . . . . 7 ((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) β†’ (1st β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) < 𝐡)
64 simprr 771 . . . . . . 7 ((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) β†’ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))
6542, 1, 51, 52, 3, 53, 54, 8, 55ovolicc2lem1 25033 . . . . . . . 8 ((πœ‘ ∧ (πΎβ€˜π‘) ∈ π‘ˆ) β†’ (𝐡 ∈ (πΎβ€˜π‘) ↔ (𝐡 ∈ ℝ ∧ (1st β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) < 𝐡 ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))))
6650, 65syldan 591 . . . . . . 7 ((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) β†’ (𝐡 ∈ (πΎβ€˜π‘) ↔ (𝐡 ∈ ℝ ∧ (1st β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) < 𝐡 ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))))
6729, 63, 64, 66mpbir3and 1342 . . . . . 6 ((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) β†’ 𝐡 ∈ (πΎβ€˜π‘))
68 fveq2 6891 . . . . . . . 8 (𝑛 = 𝑁 β†’ (πΎβ€˜π‘›) = (πΎβ€˜π‘))
6968eleq2d 2819 . . . . . . 7 (𝑛 = 𝑁 β†’ (𝐡 ∈ (πΎβ€˜π‘›) ↔ 𝐡 ∈ (πΎβ€˜π‘)))
70 ovolicc2.16 . . . . . . 7 π‘Š = {𝑛 ∈ β„• ∣ 𝐡 ∈ (πΎβ€˜π‘›)}
7169, 70elrab2 3686 . . . . . 6 (𝑁 ∈ π‘Š ↔ (𝑁 ∈ β„• ∧ 𝐡 ∈ (πΎβ€˜π‘)))
7228, 67, 71sylanbrc 583 . . . . 5 ((πœ‘ ∧ (𝑁 ∈ β„• ∧ 𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))))) β†’ 𝑁 ∈ π‘Š)
7372expr 457 . . . 4 ((πœ‘ ∧ 𝑁 ∈ β„•) β†’ (𝐡 < (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) β†’ 𝑁 ∈ π‘Š))
7427, 73sylbird 259 . . 3 ((πœ‘ ∧ 𝑁 ∈ β„•) β†’ (Β¬ (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) ≀ 𝐡 β†’ 𝑁 ∈ π‘Š))
7574con1d 145 . 2 ((πœ‘ ∧ 𝑁 ∈ β„•) β†’ (Β¬ 𝑁 ∈ π‘Š β†’ (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) ≀ 𝐡))
7675impr 455 1 ((πœ‘ ∧ (𝑁 ∈ β„• ∧ Β¬ 𝑁 ∈ π‘Š)) β†’ (2nd β€˜(πΉβ€˜(πΊβ€˜(πΎβ€˜π‘)))) ≀ 𝐡)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106   β‰  wne 2940  {crab 3432   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322  ifcif 4528  π’« cpw 4602  {csn 4628  βˆͺ cuni 4908   class class class wbr 5148   Γ— cxp 5674  ran crn 5677   ∘ ccom 5680  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408  1st c1st 7972  2nd c2nd 7973  Fincfn 8938  β„cr 11108  1c1 11110   + caddc 11112   < clt 11247   ≀ cle 11248   βˆ’ cmin 11443  β„•cn 12211  (,)cioo 13323  [,]cicc 13326  seqcseq 13965  abscabs 15180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-ioo 13327  df-icc 13330  df-fz 13484  df-seq 13966
This theorem is referenced by:  ovolicc2lem3  25035  ovolicc2lem4  25036
  Copyright terms: Public domain W3C validator