MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2lem2 Structured version   Visualization version   GIF version

Theorem ovolicc2lem2 25417
Description: Lemma for ovolicc2 25421. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc2.4 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolicc2.5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovolicc2.6 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
ovolicc2.7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
ovolicc2.8 (𝜑𝐺:𝑈⟶ℕ)
ovolicc2.9 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
ovolicc2.10 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
ovolicc2.11 (𝜑𝐻:𝑇𝑇)
ovolicc2.12 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐻𝑡))
ovolicc2.13 (𝜑𝐴𝐶)
ovolicc2.14 (𝜑𝐶𝑇)
ovolicc2.15 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶}))
ovolicc2.16 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾𝑛)}
Assertion
Ref Expression
ovolicc2lem2 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ ¬ 𝑁𝑊)) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵)
Distinct variable groups:   𝑡,𝑛,𝑢,𝐴   𝐵,𝑛,𝑡,𝑢   𝑡,𝐻   𝐶,𝑛,𝑡   𝑛,𝐹,𝑡   𝑛,𝐾,𝑡,𝑢   𝑛,𝐺,𝑡   𝑛,𝑊   𝜑,𝑛,𝑡   𝑇,𝑛,𝑡   𝑛,𝑁,𝑡,𝑢   𝑈,𝑛,𝑡,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐶(𝑢)   𝑆(𝑢,𝑡,𝑛)   𝑇(𝑢)   𝐹(𝑢)   𝐺(𝑢)   𝐻(𝑢,𝑛)   𝑊(𝑢,𝑡)

Proof of Theorem ovolicc2lem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovolicc.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
21adantr 480 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 𝐵 ∈ ℝ)
3 ovolicc2.5 . . . . . . . . 9 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4 inss2 4189 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
5 fss 6668 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ × ℝ))
63, 4, 5sylancl 586 . . . . . . . 8 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
76adantr 480 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
8 ovolicc2.8 . . . . . . . . 9 (𝜑𝐺:𝑈⟶ℕ)
98adantr 480 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → 𝐺:𝑈⟶ℕ)
10 nnuz 12778 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
11 ovolicc2.15 . . . . . . . . . . . 12 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶}))
12 1zzd 12506 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
13 ovolicc2.14 . . . . . . . . . . . 12 (𝜑𝐶𝑇)
14 ovolicc2.11 . . . . . . . . . . . 12 (𝜑𝐻:𝑇𝑇)
1510, 11, 12, 13, 14algrf 16484 . . . . . . . . . . 11 (𝜑𝐾:ℕ⟶𝑇)
1615ffvelcdmda 7018 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → (𝐾𝑁) ∈ 𝑇)
17 ineq1 4164 . . . . . . . . . . . 12 (𝑢 = (𝐾𝑁) → (𝑢 ∩ (𝐴[,]𝐵)) = ((𝐾𝑁) ∩ (𝐴[,]𝐵)))
1817neeq1d 2984 . . . . . . . . . . 11 (𝑢 = (𝐾𝑁) → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅))
19 ovolicc2.10 . . . . . . . . . . 11 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
2018, 19elrab2 3651 . . . . . . . . . 10 ((𝐾𝑁) ∈ 𝑇 ↔ ((𝐾𝑁) ∈ 𝑈 ∧ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅))
2116, 20sylib 218 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → ((𝐾𝑁) ∈ 𝑈 ∧ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅))
2221simpld 494 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (𝐾𝑁) ∈ 𝑈)
239, 22ffvelcdmd 7019 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (𝐺‘(𝐾𝑁)) ∈ ℕ)
247, 23ffvelcdmd 7019 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝐺‘(𝐾𝑁))) ∈ (ℝ × ℝ))
25 xp2nd 7957 . . . . . 6 ((𝐹‘(𝐺‘(𝐾𝑁))) ∈ (ℝ × ℝ) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
2624, 25syl 17 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
272, 26ltnled 11263 . . . 4 ((𝜑𝑁 ∈ ℕ) → (𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ↔ ¬ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵))
28 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝑁 ∈ ℕ)
291adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝐵 ∈ ℝ)
3021adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → ((𝐾𝑁) ∈ 𝑈 ∧ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅))
3130simprd 495 . . . . . . . . 9 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅)
32 n0 4304 . . . . . . . . 9 (((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵)))
3331, 32sylib 218 . . . . . . . 8 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → ∃𝑥 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵)))
34 xp1st 7956 . . . . . . . . . . . 12 ((𝐹‘(𝐺‘(𝐾𝑁))) ∈ (ℝ × ℝ) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
3524, 34syl 17 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℕ) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
3635adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
3736adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
38 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵)))
39 elin 3919 . . . . . . . . . . . . 13 (𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ↔ (𝑥 ∈ (𝐾𝑁) ∧ 𝑥 ∈ (𝐴[,]𝐵)))
4038, 39sylib 218 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ (𝐾𝑁) ∧ 𝑥 ∈ (𝐴[,]𝐵)))
4140simprd 495 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐵))
42 ovolicc.1 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
43 elicc2 13314 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4442, 1, 43syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4544ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4641, 45mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
4746simp1d 1142 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ)
481ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝐵 ∈ ℝ)
4940simpld 494 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐾𝑁))
5030simpld 494 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (𝐾𝑁) ∈ 𝑈)
51 ovolicc.3 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
52 ovolicc2.4 . . . . . . . . . . . . . 14 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
53 ovolicc2.6 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
54 ovolicc2.7 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
55 ovolicc2.9 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
5642, 1, 51, 52, 3, 53, 54, 8, 55ovolicc2lem1 25416 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐾𝑁) ∈ 𝑈) → (𝑥 ∈ (𝐾𝑁) ↔ (𝑥 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
5750, 56syldan 591 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (𝑥 ∈ (𝐾𝑁) ↔ (𝑥 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
5857adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ (𝐾𝑁) ↔ (𝑥 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
5949, 58mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁))))))
6059simp2d 1143 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥)
6146simp3d 1144 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥𝐵)
6237, 47, 48, 60, 61ltletrd 11276 . . . . . . . 8 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝐵)
6333, 62exlimddv 1935 . . . . . . 7 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝐵)
64 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))
6542, 1, 51, 52, 3, 53, 54, 8, 55ovolicc2lem1 25416 . . . . . . . 8 ((𝜑 ∧ (𝐾𝑁) ∈ 𝑈) → (𝐵 ∈ (𝐾𝑁) ↔ (𝐵 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝐵𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
6650, 65syldan 591 . . . . . . 7 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (𝐵 ∈ (𝐾𝑁) ↔ (𝐵 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝐵𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
6729, 63, 64, 66mpbir3and 1343 . . . . . 6 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝐵 ∈ (𝐾𝑁))
68 fveq2 6822 . . . . . . . 8 (𝑛 = 𝑁 → (𝐾𝑛) = (𝐾𝑁))
6968eleq2d 2814 . . . . . . 7 (𝑛 = 𝑁 → (𝐵 ∈ (𝐾𝑛) ↔ 𝐵 ∈ (𝐾𝑁)))
70 ovolicc2.16 . . . . . . 7 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾𝑛)}
7169, 70elrab2 3651 . . . . . 6 (𝑁𝑊 ↔ (𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝐾𝑁)))
7228, 67, 71sylanbrc 583 . . . . 5 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝑁𝑊)
7372expr 456 . . . 4 ((𝜑𝑁 ∈ ℕ) → (𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) → 𝑁𝑊))
7427, 73sylbird 260 . . 3 ((𝜑𝑁 ∈ ℕ) → (¬ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵𝑁𝑊))
7574con1d 145 . 2 ((𝜑𝑁 ∈ ℕ) → (¬ 𝑁𝑊 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵))
7675impr 454 1 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ ¬ 𝑁𝑊)) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  {crab 3394  cin 3902  wss 3903  c0 4284  ifcif 4476  𝒫 cpw 4551  {csn 4577   cuni 4858   class class class wbr 5092   × cxp 5617  ran crn 5620  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  Fincfn 8872  cr 11008  1c1 11010   + caddc 11012   < clt 11149  cle 11150  cmin 11347  cn 12128  (,)cioo 13248  [,]cicc 13251  seqcseq 13908  abscabs 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-ioo 13252  df-icc 13255  df-fz 13411  df-seq 13909
This theorem is referenced by:  ovolicc2lem3  25418  ovolicc2lem4  25419
  Copyright terms: Public domain W3C validator