MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2lem2 Structured version   Visualization version   GIF version

Theorem ovolicc2lem2 24034
Description: Lemma for ovolicc2 24038. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc2.4 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolicc2.5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovolicc2.6 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
ovolicc2.7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
ovolicc2.8 (𝜑𝐺:𝑈⟶ℕ)
ovolicc2.9 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
ovolicc2.10 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
ovolicc2.11 (𝜑𝐻:𝑇𝑇)
ovolicc2.12 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐻𝑡))
ovolicc2.13 (𝜑𝐴𝐶)
ovolicc2.14 (𝜑𝐶𝑇)
ovolicc2.15 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶}))
ovolicc2.16 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾𝑛)}
Assertion
Ref Expression
ovolicc2lem2 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ ¬ 𝑁𝑊)) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵)
Distinct variable groups:   𝑡,𝑛,𝑢,𝐴   𝐵,𝑛,𝑡,𝑢   𝑡,𝐻   𝐶,𝑛,𝑡   𝑛,𝐹,𝑡   𝑛,𝐾,𝑡,𝑢   𝑛,𝐺,𝑡   𝑛,𝑊   𝜑,𝑛,𝑡   𝑇,𝑛,𝑡   𝑛,𝑁,𝑡,𝑢   𝑈,𝑛,𝑡,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐶(𝑢)   𝑆(𝑢,𝑡,𝑛)   𝑇(𝑢)   𝐹(𝑢)   𝐺(𝑢)   𝐻(𝑢,𝑛)   𝑊(𝑢,𝑡)

Proof of Theorem ovolicc2lem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovolicc.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
21adantr 481 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 𝐵 ∈ ℝ)
3 ovolicc2.5 . . . . . . . . 9 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4 inss2 4209 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
5 fss 6523 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ × ℝ))
63, 4, 5sylancl 586 . . . . . . . 8 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
76adantr 481 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
8 ovolicc2.8 . . . . . . . . 9 (𝜑𝐺:𝑈⟶ℕ)
98adantr 481 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → 𝐺:𝑈⟶ℕ)
10 nnuz 12273 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
11 ovolicc2.15 . . . . . . . . . . . 12 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶}))
12 1zzd 12005 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
13 ovolicc2.14 . . . . . . . . . . . 12 (𝜑𝐶𝑇)
14 ovolicc2.11 . . . . . . . . . . . 12 (𝜑𝐻:𝑇𝑇)
1510, 11, 12, 13, 14algrf 15909 . . . . . . . . . . 11 (𝜑𝐾:ℕ⟶𝑇)
1615ffvelrnda 6846 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → (𝐾𝑁) ∈ 𝑇)
17 ineq1 4184 . . . . . . . . . . . 12 (𝑢 = (𝐾𝑁) → (𝑢 ∩ (𝐴[,]𝐵)) = ((𝐾𝑁) ∩ (𝐴[,]𝐵)))
1817neeq1d 3079 . . . . . . . . . . 11 (𝑢 = (𝐾𝑁) → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅))
19 ovolicc2.10 . . . . . . . . . . 11 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
2018, 19elrab2 3686 . . . . . . . . . 10 ((𝐾𝑁) ∈ 𝑇 ↔ ((𝐾𝑁) ∈ 𝑈 ∧ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅))
2116, 20sylib 219 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → ((𝐾𝑁) ∈ 𝑈 ∧ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅))
2221simpld 495 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (𝐾𝑁) ∈ 𝑈)
239, 22ffvelrnd 6847 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (𝐺‘(𝐾𝑁)) ∈ ℕ)
247, 23ffvelrnd 6847 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝐺‘(𝐾𝑁))) ∈ (ℝ × ℝ))
25 xp2nd 7716 . . . . . 6 ((𝐹‘(𝐺‘(𝐾𝑁))) ∈ (ℝ × ℝ) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
2624, 25syl 17 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
272, 26ltnled 10779 . . . 4 ((𝜑𝑁 ∈ ℕ) → (𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ↔ ¬ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵))
28 simprl 767 . . . . . 6 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝑁 ∈ ℕ)
291adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝐵 ∈ ℝ)
3021adantrr 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → ((𝐾𝑁) ∈ 𝑈 ∧ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅))
3130simprd 496 . . . . . . . . 9 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅)
32 n0 4313 . . . . . . . . 9 (((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵)))
3331, 32sylib 219 . . . . . . . 8 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → ∃𝑥 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵)))
34 xp1st 7715 . . . . . . . . . . . 12 ((𝐹‘(𝐺‘(𝐾𝑁))) ∈ (ℝ × ℝ) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
3524, 34syl 17 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℕ) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
3635adantrr 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
3736adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
38 simpr 485 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵)))
39 elin 4172 . . . . . . . . . . . . 13 (𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ↔ (𝑥 ∈ (𝐾𝑁) ∧ 𝑥 ∈ (𝐴[,]𝐵)))
4038, 39sylib 219 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ (𝐾𝑁) ∧ 𝑥 ∈ (𝐴[,]𝐵)))
4140simprd 496 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐵))
42 ovolicc.1 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
43 elicc2 12794 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4442, 1, 43syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4544ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4641, 45mpbid 233 . . . . . . . . . 10 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
4746simp1d 1136 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ)
481ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝐵 ∈ ℝ)
4940simpld 495 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐾𝑁))
5030simpld 495 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (𝐾𝑁) ∈ 𝑈)
51 ovolicc.3 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
52 ovolicc2.4 . . . . . . . . . . . . . 14 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
53 ovolicc2.6 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
54 ovolicc2.7 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
55 ovolicc2.9 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
5642, 1, 51, 52, 3, 53, 54, 8, 55ovolicc2lem1 24033 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐾𝑁) ∈ 𝑈) → (𝑥 ∈ (𝐾𝑁) ↔ (𝑥 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
5750, 56syldan 591 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (𝑥 ∈ (𝐾𝑁) ↔ (𝑥 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
5857adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ (𝐾𝑁) ↔ (𝑥 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
5949, 58mpbid 233 . . . . . . . . . 10 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁))))))
6059simp2d 1137 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥)
6146simp3d 1138 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥𝐵)
6237, 47, 48, 60, 61ltletrd 10792 . . . . . . . 8 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝐵)
6333, 62exlimddv 1929 . . . . . . 7 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝐵)
64 simprr 769 . . . . . . 7 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))
6542, 1, 51, 52, 3, 53, 54, 8, 55ovolicc2lem1 24033 . . . . . . . 8 ((𝜑 ∧ (𝐾𝑁) ∈ 𝑈) → (𝐵 ∈ (𝐾𝑁) ↔ (𝐵 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝐵𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
6650, 65syldan 591 . . . . . . 7 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (𝐵 ∈ (𝐾𝑁) ↔ (𝐵 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝐵𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
6729, 63, 64, 66mpbir3and 1336 . . . . . 6 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝐵 ∈ (𝐾𝑁))
68 fveq2 6666 . . . . . . . 8 (𝑛 = 𝑁 → (𝐾𝑛) = (𝐾𝑁))
6968eleq2d 2902 . . . . . . 7 (𝑛 = 𝑁 → (𝐵 ∈ (𝐾𝑛) ↔ 𝐵 ∈ (𝐾𝑁)))
70 ovolicc2.16 . . . . . . 7 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾𝑛)}
7169, 70elrab2 3686 . . . . . 6 (𝑁𝑊 ↔ (𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝐾𝑁)))
7228, 67, 71sylanbrc 583 . . . . 5 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝑁𝑊)
7372expr 457 . . . 4 ((𝜑𝑁 ∈ ℕ) → (𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) → 𝑁𝑊))
7427, 73sylbird 261 . . 3 ((𝜑𝑁 ∈ ℕ) → (¬ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵𝑁𝑊))
7574con1d 147 . 2 ((𝜑𝑁 ∈ ℕ) → (¬ 𝑁𝑊 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵))
7675impr 455 1 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ ¬ 𝑁𝑊)) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wex 1773  wcel 2106  wne 3020  {crab 3146  cin 3938  wss 3939  c0 4294  ifcif 4469  𝒫 cpw 4541  {csn 4563   cuni 4836   class class class wbr 5062   × cxp 5551  ran crn 5554  ccom 5557  wf 6347  cfv 6351  (class class class)co 7151  1st c1st 7681  2nd c2nd 7682  Fincfn 8501  cr 10528  1c1 10530   + caddc 10532   < clt 10667  cle 10668  cmin 10862  cn 11630  (,)cioo 12731  [,]cicc 12734  seqcseq 13362  abscabs 14586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-ioo 12735  df-icc 12738  df-fz 12886  df-seq 13363
This theorem is referenced by:  ovolicc2lem3  24035  ovolicc2lem4  24036
  Copyright terms: Public domain W3C validator