Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ragncol | Structured version Visualization version GIF version |
Description: Right angle implies non-colinearity. A consequence of theorem 8.9 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
Ref | Expression |
---|---|
israg.p | ⊢ 𝑃 = (Base‘𝐺) |
israg.d | ⊢ − = (dist‘𝐺) |
israg.i | ⊢ 𝐼 = (Itv‘𝐺) |
israg.l | ⊢ 𝐿 = (LineG‘𝐺) |
israg.s | ⊢ 𝑆 = (pInvG‘𝐺) |
israg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
israg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
israg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
israg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ragncol.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
ragncol.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
ragncol.3 | ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
Ref | Expression |
---|---|
ragncol | ⊢ (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ragncol.2 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | 1 | neneqd 2957 | . . 3 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | ragncol.3 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐵) | |
4 | 3 | neneqd 2957 | . . 3 ⊢ (𝜑 → ¬ 𝐶 = 𝐵) |
5 | ioran 982 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐵) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐵)) | |
6 | 2, 4, 5 | sylanbrc 587 | . 2 ⊢ (𝜑 → ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐵)) |
7 | israg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
8 | israg.d | . . 3 ⊢ − = (dist‘𝐺) | |
9 | israg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
10 | israg.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
11 | israg.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
12 | israg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
13 | 12 | adantr 485 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐺 ∈ TarskiG) |
14 | israg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
15 | 14 | adantr 485 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐴 ∈ 𝑃) |
16 | israg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
17 | 16 | adantr 485 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐵 ∈ 𝑃) |
18 | israg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
19 | 18 | adantr 485 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐶 ∈ 𝑃) |
20 | ragncol.1 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | |
21 | 20 | adantr 485 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
22 | simpr 489 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) | |
23 | 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 22 | ragflat3 26600 | . 2 ⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐴 = 𝐵 ∨ 𝐶 = 𝐵)) |
24 | 6, 23 | mtand 816 | 1 ⊢ (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 ∨ wo 845 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ‘cfv 6336 (class class class)co 7151 〈“cs3 14252 Basecbs 16542 distcds 16633 TarskiGcstrkg 26324 Itvcitv 26330 LineGclng 26331 pInvGcmir 26546 ∟Gcrag 26587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-map 8419 df-pm 8420 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-dju 9364 df-card 9402 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-2 11738 df-3 11739 df-n0 11936 df-xnn0 12008 df-z 12022 df-uz 12284 df-fz 12941 df-fzo 13084 df-hash 13742 df-word 13915 df-concat 13971 df-s1 13998 df-s2 14258 df-s3 14259 df-trkgc 26342 df-trkgb 26343 df-trkgcb 26344 df-trkg 26347 df-cgrg 26405 df-mir 26547 df-rag 26588 |
This theorem is referenced by: perpneq 26608 |
Copyright terms: Public domain | W3C validator |