![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ragncol | Structured version Visualization version GIF version |
Description: Right angle implies non-colinearity. A consequence of theorem 8.9 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
Ref | Expression |
---|---|
israg.p | β’ π = (BaseβπΊ) |
israg.d | β’ β = (distβπΊ) |
israg.i | β’ πΌ = (ItvβπΊ) |
israg.l | β’ πΏ = (LineGβπΊ) |
israg.s | β’ π = (pInvGβπΊ) |
israg.g | β’ (π β πΊ β TarskiG) |
israg.a | β’ (π β π΄ β π) |
israg.b | β’ (π β π΅ β π) |
israg.c | β’ (π β πΆ β π) |
ragncol.1 | β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) |
ragncol.2 | β’ (π β π΄ β π΅) |
ragncol.3 | β’ (π β πΆ β π΅) |
Ref | Expression |
---|---|
ragncol | β’ (π β Β¬ (πΆ β (π΄πΏπ΅) β¨ π΄ = π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ragncol.2 | . . . 4 β’ (π β π΄ β π΅) | |
2 | 1 | neneqd 2944 | . . 3 β’ (π β Β¬ π΄ = π΅) |
3 | ragncol.3 | . . . 4 β’ (π β πΆ β π΅) | |
4 | 3 | neneqd 2944 | . . 3 β’ (π β Β¬ πΆ = π΅) |
5 | ioran 981 | . . 3 β’ (Β¬ (π΄ = π΅ β¨ πΆ = π΅) β (Β¬ π΄ = π΅ β§ Β¬ πΆ = π΅)) | |
6 | 2, 4, 5 | sylanbrc 582 | . 2 β’ (π β Β¬ (π΄ = π΅ β¨ πΆ = π΅)) |
7 | israg.p | . . 3 β’ π = (BaseβπΊ) | |
8 | israg.d | . . 3 β’ β = (distβπΊ) | |
9 | israg.i | . . 3 β’ πΌ = (ItvβπΊ) | |
10 | israg.l | . . 3 β’ πΏ = (LineGβπΊ) | |
11 | israg.s | . . 3 β’ π = (pInvGβπΊ) | |
12 | israg.g | . . . 4 β’ (π β πΊ β TarskiG) | |
13 | 12 | adantr 480 | . . 3 β’ ((π β§ (πΆ β (π΄πΏπ΅) β¨ π΄ = π΅)) β πΊ β TarskiG) |
14 | israg.a | . . . 4 β’ (π β π΄ β π) | |
15 | 14 | adantr 480 | . . 3 β’ ((π β§ (πΆ β (π΄πΏπ΅) β¨ π΄ = π΅)) β π΄ β π) |
16 | israg.b | . . . 4 β’ (π β π΅ β π) | |
17 | 16 | adantr 480 | . . 3 β’ ((π β§ (πΆ β (π΄πΏπ΅) β¨ π΄ = π΅)) β π΅ β π) |
18 | israg.c | . . . 4 β’ (π β πΆ β π) | |
19 | 18 | adantr 480 | . . 3 β’ ((π β§ (πΆ β (π΄πΏπ΅) β¨ π΄ = π΅)) β πΆ β π) |
20 | ragncol.1 | . . . 4 β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) | |
21 | 20 | adantr 480 | . . 3 β’ ((π β§ (πΆ β (π΄πΏπ΅) β¨ π΄ = π΅)) β β¨βπ΄π΅πΆββ© β (βGβπΊ)) |
22 | simpr 484 | . . 3 β’ ((π β§ (πΆ β (π΄πΏπ΅) β¨ π΄ = π΅)) β (πΆ β (π΄πΏπ΅) β¨ π΄ = π΅)) | |
23 | 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 22 | ragflat3 28225 | . 2 β’ ((π β§ (πΆ β (π΄πΏπ΅) β¨ π΄ = π΅)) β (π΄ = π΅ β¨ πΆ = π΅)) |
24 | 6, 23 | mtand 813 | 1 β’ (π β Β¬ (πΆ β (π΄πΏπ΅) β¨ π΄ = π΅)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β¨ wo 844 = wceq 1540 β wcel 2105 β wne 2939 βcfv 6543 (class class class)co 7412 β¨βcs3 14798 Basecbs 17149 distcds 17211 TarskiGcstrkg 27946 Itvcitv 27952 LineGclng 27953 pInvGcmir 28171 βGcrag 28212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-oadd 8473 df-er 8706 df-map 8825 df-pm 8826 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-dju 9899 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-concat 14526 df-s1 14551 df-s2 14804 df-s3 14805 df-trkgc 27967 df-trkgb 27968 df-trkgcb 27969 df-trkg 27972 df-cgrg 28030 df-mir 28172 df-rag 28213 |
This theorem is referenced by: perpneq 28233 |
Copyright terms: Public domain | W3C validator |