MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragncol Structured version   Visualization version   GIF version

Theorem ragncol 26212
Description: Right angle implies non-colinearity. A consequence of theorem 8.9 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 1-Dec-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
ragncol.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
ragncol.2 (𝜑𝐴𝐵)
ragncol.3 (𝜑𝐶𝐵)
Assertion
Ref Expression
ragncol (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))

Proof of Theorem ragncol
StepHypRef Expression
1 ragncol.2 . . . 4 (𝜑𝐴𝐵)
21neneqd 2974 . . 3 (𝜑 → ¬ 𝐴 = 𝐵)
3 ragncol.3 . . . 4 (𝜑𝐶𝐵)
43neneqd 2974 . . 3 (𝜑 → ¬ 𝐶 = 𝐵)
5 ioran 967 . . 3 (¬ (𝐴 = 𝐵𝐶 = 𝐵) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐵))
62, 4, 5sylanbrc 575 . 2 (𝜑 → ¬ (𝐴 = 𝐵𝐶 = 𝐵))
7 israg.p . . 3 𝑃 = (Base‘𝐺)
8 israg.d . . 3 = (dist‘𝐺)
9 israg.i . . 3 𝐼 = (Itv‘𝐺)
10 israg.l . . 3 𝐿 = (LineG‘𝐺)
11 israg.s . . 3 𝑆 = (pInvG‘𝐺)
12 israg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
1312adantr 473 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐺 ∈ TarskiG)
14 israg.a . . . 4 (𝜑𝐴𝑃)
1514adantr 473 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐴𝑃)
16 israg.b . . . 4 (𝜑𝐵𝑃)
1716adantr 473 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐵𝑃)
18 israg.c . . . 4 (𝜑𝐶𝑃)
1918adantr 473 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐶𝑃)
20 ragncol.1 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
2120adantr 473 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
22 simpr 477 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
237, 8, 9, 10, 11, 13, 15, 17, 19, 21, 22ragflat3 26209 . 2 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐴 = 𝐵𝐶 = 𝐵))
246, 23mtand 804 1 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  wo 834   = wceq 1508  wcel 2051  wne 2969  cfv 6193  (class class class)co 6982  ⟨“cs3 14072  Basecbs 16345  distcds 16436  TarskiGcstrkg 25933  Itvcitv 25939  LineGclng 25940  pInvGcmir 26155  ∟Gcrag 26196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-oadd 7915  df-er 8095  df-map 8214  df-pm 8215  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-dju 9130  df-card 9168  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-nn 11446  df-2 11509  df-3 11510  df-n0 11714  df-xnn0 11786  df-z 11800  df-uz 12065  df-fz 12715  df-fzo 12856  df-hash 13512  df-word 13679  df-concat 13740  df-s1 13765  df-s2 14078  df-s3 14079  df-trkgc 25951  df-trkgb 25952  df-trkgcb 25953  df-trkg 25956  df-cgrg 26014  df-mir 26156  df-rag 26197
This theorem is referenced by:  perpneq  26217
  Copyright terms: Public domain W3C validator