![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ragncol | Structured version Visualization version GIF version |
Description: Right angle implies non-colinearity. A consequence of theorem 8.9 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
Ref | Expression |
---|---|
israg.p | ⊢ 𝑃 = (Base‘𝐺) |
israg.d | ⊢ − = (dist‘𝐺) |
israg.i | ⊢ 𝐼 = (Itv‘𝐺) |
israg.l | ⊢ 𝐿 = (LineG‘𝐺) |
israg.s | ⊢ 𝑆 = (pInvG‘𝐺) |
israg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
israg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
israg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
israg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ragncol.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
ragncol.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
ragncol.3 | ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
Ref | Expression |
---|---|
ragncol | ⊢ (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ragncol.2 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | 1 | neneqd 2974 | . . 3 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | ragncol.3 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐵) | |
4 | 3 | neneqd 2974 | . . 3 ⊢ (𝜑 → ¬ 𝐶 = 𝐵) |
5 | ioran 967 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐵) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐵)) | |
6 | 2, 4, 5 | sylanbrc 575 | . 2 ⊢ (𝜑 → ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐵)) |
7 | israg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
8 | israg.d | . . 3 ⊢ − = (dist‘𝐺) | |
9 | israg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
10 | israg.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
11 | israg.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
12 | israg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
13 | 12 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐺 ∈ TarskiG) |
14 | israg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
15 | 14 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐴 ∈ 𝑃) |
16 | israg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
17 | 16 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐵 ∈ 𝑃) |
18 | israg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
19 | 18 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐶 ∈ 𝑃) |
20 | ragncol.1 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | |
21 | 20 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
22 | simpr 477 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) | |
23 | 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 22 | ragflat3 26209 | . 2 ⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐴 = 𝐵 ∨ 𝐶 = 𝐵)) |
24 | 6, 23 | mtand 804 | 1 ⊢ (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 ∨ wo 834 = wceq 1508 ∈ wcel 2051 ≠ wne 2969 ‘cfv 6193 (class class class)co 6982 〈“cs3 14072 Basecbs 16345 distcds 16436 TarskiGcstrkg 25933 Itvcitv 25939 LineGclng 25940 pInvGcmir 26155 ∟Gcrag 26196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-int 4755 df-iun 4799 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-om 7403 df-1st 7507 df-2nd 7508 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-1o 7911 df-oadd 7915 df-er 8095 df-map 8214 df-pm 8215 df-en 8313 df-dom 8314 df-sdom 8315 df-fin 8316 df-dju 9130 df-card 9168 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-nn 11446 df-2 11509 df-3 11510 df-n0 11714 df-xnn0 11786 df-z 11800 df-uz 12065 df-fz 12715 df-fzo 12856 df-hash 13512 df-word 13679 df-concat 13740 df-s1 13765 df-s2 14078 df-s3 14079 df-trkgc 25951 df-trkgb 25952 df-trkgcb 25953 df-trkg 25956 df-cgrg 26014 df-mir 26156 df-rag 26197 |
This theorem is referenced by: perpneq 26217 |
Copyright terms: Public domain | W3C validator |