Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pmtrdifellem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for pmtrdifel 19003. (Contributed by AV, 15-Jan-2019.) |
Ref | Expression |
---|---|
pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
pmtrdifel.0 | ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) |
Ref | Expression |
---|---|
pmtrdifellem3 | ⊢ (𝑄 ∈ 𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑥) = (𝑆‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrdifel.t | . . . . . . 7 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
2 | pmtrdifel.r | . . . . . . 7 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
3 | pmtrdifel.0 | . . . . . . 7 ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) | |
4 | 1, 2, 3 | pmtrdifellem2 19000 | . . . . . 6 ⊢ (𝑄 ∈ 𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I )) |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I )) |
6 | 5 | eleq2d 2824 | . . . 4 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑥 ∈ dom (𝑆 ∖ I ) ↔ 𝑥 ∈ dom (𝑄 ∖ I ))) |
7 | 4 | difeq1d 4052 | . . . . . 6 ⊢ (𝑄 ∈ 𝑇 → (dom (𝑆 ∖ I ) ∖ {𝑥}) = (dom (𝑄 ∖ I ) ∖ {𝑥})) |
8 | 7 | unieqd 4850 | . . . . 5 ⊢ (𝑄 ∈ 𝑇 → ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}) = ∪ (dom (𝑄 ∖ I ) ∖ {𝑥})) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}) = ∪ (dom (𝑄 ∖ I ) ∖ {𝑥})) |
10 | 6, 9 | ifbieq1d 4480 | . . 3 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → if(𝑥 ∈ dom (𝑆 ∖ I ), ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}), 𝑥) = if(𝑥 ∈ dom (𝑄 ∖ I ), ∪ (dom (𝑄 ∖ I ) ∖ {𝑥}), 𝑥)) |
11 | 1, 2, 3 | pmtrdifellem1 18999 | . . . 4 ⊢ (𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅) |
12 | eldifi 4057 | . . . 4 ⊢ (𝑥 ∈ (𝑁 ∖ {𝐾}) → 𝑥 ∈ 𝑁) | |
13 | eqid 2738 | . . . . 5 ⊢ (pmTrsp‘𝑁) = (pmTrsp‘𝑁) | |
14 | eqid 2738 | . . . . 5 ⊢ dom (𝑆 ∖ I ) = dom (𝑆 ∖ I ) | |
15 | 13, 2, 14 | pmtrffv 18982 | . . . 4 ⊢ ((𝑆 ∈ 𝑅 ∧ 𝑥 ∈ 𝑁) → (𝑆‘𝑥) = if(𝑥 ∈ dom (𝑆 ∖ I ), ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}), 𝑥)) |
16 | 11, 12, 15 | syl2an 595 | . . 3 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑆‘𝑥) = if(𝑥 ∈ dom (𝑆 ∖ I ), ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}), 𝑥)) |
17 | eqid 2738 | . . . 4 ⊢ (pmTrsp‘(𝑁 ∖ {𝐾})) = (pmTrsp‘(𝑁 ∖ {𝐾})) | |
18 | eqid 2738 | . . . 4 ⊢ dom (𝑄 ∖ I ) = dom (𝑄 ∖ I ) | |
19 | 17, 1, 18 | pmtrffv 18982 | . . 3 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑄‘𝑥) = if(𝑥 ∈ dom (𝑄 ∖ I ), ∪ (dom (𝑄 ∖ I ) ∖ {𝑥}), 𝑥)) |
20 | 10, 16, 19 | 3eqtr4rd 2789 | . 2 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑄‘𝑥) = (𝑆‘𝑥)) |
21 | 20 | ralrimiva 3107 | 1 ⊢ (𝑄 ∈ 𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑥) = (𝑆‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∖ cdif 3880 ifcif 4456 {csn 4558 ∪ cuni 4836 I cid 5479 dom cdm 5580 ran crn 5581 ‘cfv 6418 pmTrspcpmtr 18964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pmtr 18965 |
This theorem is referenced by: pmtrdifel 19003 pmtrdifwrdellem3 19006 |
Copyright terms: Public domain | W3C validator |