![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrdifellem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for pmtrdifel 19347. (Contributed by AV, 15-Jan-2019.) |
Ref | Expression |
---|---|
pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
pmtrdifel.0 | ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) |
Ref | Expression |
---|---|
pmtrdifellem3 | ⊢ (𝑄 ∈ 𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑥) = (𝑆‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrdifel.t | . . . . . . 7 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
2 | pmtrdifel.r | . . . . . . 7 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
3 | pmtrdifel.0 | . . . . . . 7 ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) | |
4 | 1, 2, 3 | pmtrdifellem2 19344 | . . . . . 6 ⊢ (𝑄 ∈ 𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I )) |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I )) |
6 | 5 | eleq2d 2819 | . . . 4 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑥 ∈ dom (𝑆 ∖ I ) ↔ 𝑥 ∈ dom (𝑄 ∖ I ))) |
7 | 4 | difeq1d 4121 | . . . . . 6 ⊢ (𝑄 ∈ 𝑇 → (dom (𝑆 ∖ I ) ∖ {𝑥}) = (dom (𝑄 ∖ I ) ∖ {𝑥})) |
8 | 7 | unieqd 4922 | . . . . 5 ⊢ (𝑄 ∈ 𝑇 → ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}) = ∪ (dom (𝑄 ∖ I ) ∖ {𝑥})) |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}) = ∪ (dom (𝑄 ∖ I ) ∖ {𝑥})) |
10 | 6, 9 | ifbieq1d 4552 | . . 3 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → if(𝑥 ∈ dom (𝑆 ∖ I ), ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}), 𝑥) = if(𝑥 ∈ dom (𝑄 ∖ I ), ∪ (dom (𝑄 ∖ I ) ∖ {𝑥}), 𝑥)) |
11 | 1, 2, 3 | pmtrdifellem1 19343 | . . . 4 ⊢ (𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅) |
12 | eldifi 4126 | . . . 4 ⊢ (𝑥 ∈ (𝑁 ∖ {𝐾}) → 𝑥 ∈ 𝑁) | |
13 | eqid 2732 | . . . . 5 ⊢ (pmTrsp‘𝑁) = (pmTrsp‘𝑁) | |
14 | eqid 2732 | . . . . 5 ⊢ dom (𝑆 ∖ I ) = dom (𝑆 ∖ I ) | |
15 | 13, 2, 14 | pmtrffv 19326 | . . . 4 ⊢ ((𝑆 ∈ 𝑅 ∧ 𝑥 ∈ 𝑁) → (𝑆‘𝑥) = if(𝑥 ∈ dom (𝑆 ∖ I ), ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}), 𝑥)) |
16 | 11, 12, 15 | syl2an 596 | . . 3 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑆‘𝑥) = if(𝑥 ∈ dom (𝑆 ∖ I ), ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}), 𝑥)) |
17 | eqid 2732 | . . . 4 ⊢ (pmTrsp‘(𝑁 ∖ {𝐾})) = (pmTrsp‘(𝑁 ∖ {𝐾})) | |
18 | eqid 2732 | . . . 4 ⊢ dom (𝑄 ∖ I ) = dom (𝑄 ∖ I ) | |
19 | 17, 1, 18 | pmtrffv 19326 | . . 3 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑄‘𝑥) = if(𝑥 ∈ dom (𝑄 ∖ I ), ∪ (dom (𝑄 ∖ I ) ∖ {𝑥}), 𝑥)) |
20 | 10, 16, 19 | 3eqtr4rd 2783 | . 2 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑄‘𝑥) = (𝑆‘𝑥)) |
21 | 20 | ralrimiva 3146 | 1 ⊢ (𝑄 ∈ 𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑥) = (𝑆‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∖ cdif 3945 ifcif 4528 {csn 4628 ∪ cuni 4908 I cid 5573 dom cdm 5676 ran crn 5677 ‘cfv 6543 pmTrspcpmtr 19308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7855 df-1o 8465 df-2o 8466 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pmtr 19309 |
This theorem is referenced by: pmtrdifel 19347 pmtrdifwrdellem3 19350 |
Copyright terms: Public domain | W3C validator |