| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrdifellem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for pmtrdifel 19416. (Contributed by AV, 15-Jan-2019.) |
| Ref | Expression |
|---|---|
| pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
| pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
| pmtrdifel.0 | ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) |
| Ref | Expression |
|---|---|
| pmtrdifellem3 | ⊢ (𝑄 ∈ 𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑥) = (𝑆‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | . . . . . . 7 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
| 2 | pmtrdifel.r | . . . . . . 7 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
| 3 | pmtrdifel.0 | . . . . . . 7 ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) | |
| 4 | 1, 2, 3 | pmtrdifellem2 19413 | . . . . . 6 ⊢ (𝑄 ∈ 𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I )) |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I )) |
| 6 | 5 | eleq2d 2815 | . . . 4 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑥 ∈ dom (𝑆 ∖ I ) ↔ 𝑥 ∈ dom (𝑄 ∖ I ))) |
| 7 | 4 | difeq1d 4096 | . . . . . 6 ⊢ (𝑄 ∈ 𝑇 → (dom (𝑆 ∖ I ) ∖ {𝑥}) = (dom (𝑄 ∖ I ) ∖ {𝑥})) |
| 8 | 7 | unieqd 4892 | . . . . 5 ⊢ (𝑄 ∈ 𝑇 → ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}) = ∪ (dom (𝑄 ∖ I ) ∖ {𝑥})) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}) = ∪ (dom (𝑄 ∖ I ) ∖ {𝑥})) |
| 10 | 6, 9 | ifbieq1d 4521 | . . 3 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → if(𝑥 ∈ dom (𝑆 ∖ I ), ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}), 𝑥) = if(𝑥 ∈ dom (𝑄 ∖ I ), ∪ (dom (𝑄 ∖ I ) ∖ {𝑥}), 𝑥)) |
| 11 | 1, 2, 3 | pmtrdifellem1 19412 | . . . 4 ⊢ (𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅) |
| 12 | eldifi 4102 | . . . 4 ⊢ (𝑥 ∈ (𝑁 ∖ {𝐾}) → 𝑥 ∈ 𝑁) | |
| 13 | eqid 2730 | . . . . 5 ⊢ (pmTrsp‘𝑁) = (pmTrsp‘𝑁) | |
| 14 | eqid 2730 | . . . . 5 ⊢ dom (𝑆 ∖ I ) = dom (𝑆 ∖ I ) | |
| 15 | 13, 2, 14 | pmtrffv 19395 | . . . 4 ⊢ ((𝑆 ∈ 𝑅 ∧ 𝑥 ∈ 𝑁) → (𝑆‘𝑥) = if(𝑥 ∈ dom (𝑆 ∖ I ), ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}), 𝑥)) |
| 16 | 11, 12, 15 | syl2an 596 | . . 3 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑆‘𝑥) = if(𝑥 ∈ dom (𝑆 ∖ I ), ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}), 𝑥)) |
| 17 | eqid 2730 | . . . 4 ⊢ (pmTrsp‘(𝑁 ∖ {𝐾})) = (pmTrsp‘(𝑁 ∖ {𝐾})) | |
| 18 | eqid 2730 | . . . 4 ⊢ dom (𝑄 ∖ I ) = dom (𝑄 ∖ I ) | |
| 19 | 17, 1, 18 | pmtrffv 19395 | . . 3 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑄‘𝑥) = if(𝑥 ∈ dom (𝑄 ∖ I ), ∪ (dom (𝑄 ∖ I ) ∖ {𝑥}), 𝑥)) |
| 20 | 10, 16, 19 | 3eqtr4rd 2776 | . 2 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑄‘𝑥) = (𝑆‘𝑥)) |
| 21 | 20 | ralrimiva 3127 | 1 ⊢ (𝑄 ∈ 𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑥) = (𝑆‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3046 ∖ cdif 3919 ifcif 4496 {csn 4597 ∪ cuni 4879 I cid 5540 dom cdm 5646 ran crn 5647 ‘cfv 6519 pmTrspcpmtr 19377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-om 7851 df-1o 8443 df-2o 8444 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pmtr 19378 |
| This theorem is referenced by: pmtrdifel 19416 pmtrdifwrdellem3 19419 |
| Copyright terms: Public domain | W3C validator |