Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pmtrdifellem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for pmtrdifel 18739. (Contributed by AV, 15-Jan-2019.) |
Ref | Expression |
---|---|
pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
pmtrdifel.0 | ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) |
Ref | Expression |
---|---|
pmtrdifellem3 | ⊢ (𝑄 ∈ 𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑥) = (𝑆‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrdifel.t | . . . . . . 7 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
2 | pmtrdifel.r | . . . . . . 7 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
3 | pmtrdifel.0 | . . . . . . 7 ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) | |
4 | 1, 2, 3 | pmtrdifellem2 18736 | . . . . . 6 ⊢ (𝑄 ∈ 𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I )) |
5 | 4 | adantr 484 | . . . . 5 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I )) |
6 | 5 | eleq2d 2819 | . . . 4 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑥 ∈ dom (𝑆 ∖ I ) ↔ 𝑥 ∈ dom (𝑄 ∖ I ))) |
7 | 4 | difeq1d 4022 | . . . . . 6 ⊢ (𝑄 ∈ 𝑇 → (dom (𝑆 ∖ I ) ∖ {𝑥}) = (dom (𝑄 ∖ I ) ∖ {𝑥})) |
8 | 7 | unieqd 4820 | . . . . 5 ⊢ (𝑄 ∈ 𝑇 → ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}) = ∪ (dom (𝑄 ∖ I ) ∖ {𝑥})) |
9 | 8 | adantr 484 | . . . 4 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}) = ∪ (dom (𝑄 ∖ I ) ∖ {𝑥})) |
10 | 6, 9 | ifbieq1d 4448 | . . 3 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → if(𝑥 ∈ dom (𝑆 ∖ I ), ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}), 𝑥) = if(𝑥 ∈ dom (𝑄 ∖ I ), ∪ (dom (𝑄 ∖ I ) ∖ {𝑥}), 𝑥)) |
11 | 1, 2, 3 | pmtrdifellem1 18735 | . . . 4 ⊢ (𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅) |
12 | eldifi 4027 | . . . 4 ⊢ (𝑥 ∈ (𝑁 ∖ {𝐾}) → 𝑥 ∈ 𝑁) | |
13 | eqid 2739 | . . . . 5 ⊢ (pmTrsp‘𝑁) = (pmTrsp‘𝑁) | |
14 | eqid 2739 | . . . . 5 ⊢ dom (𝑆 ∖ I ) = dom (𝑆 ∖ I ) | |
15 | 13, 2, 14 | pmtrffv 18718 | . . . 4 ⊢ ((𝑆 ∈ 𝑅 ∧ 𝑥 ∈ 𝑁) → (𝑆‘𝑥) = if(𝑥 ∈ dom (𝑆 ∖ I ), ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}), 𝑥)) |
16 | 11, 12, 15 | syl2an 599 | . . 3 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑆‘𝑥) = if(𝑥 ∈ dom (𝑆 ∖ I ), ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}), 𝑥)) |
17 | eqid 2739 | . . . 4 ⊢ (pmTrsp‘(𝑁 ∖ {𝐾})) = (pmTrsp‘(𝑁 ∖ {𝐾})) | |
18 | eqid 2739 | . . . 4 ⊢ dom (𝑄 ∖ I ) = dom (𝑄 ∖ I ) | |
19 | 17, 1, 18 | pmtrffv 18718 | . . 3 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑄‘𝑥) = if(𝑥 ∈ dom (𝑄 ∖ I ), ∪ (dom (𝑄 ∖ I ) ∖ {𝑥}), 𝑥)) |
20 | 10, 16, 19 | 3eqtr4rd 2785 | . 2 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑄‘𝑥) = (𝑆‘𝑥)) |
21 | 20 | ralrimiva 3097 | 1 ⊢ (𝑄 ∈ 𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑥) = (𝑆‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3054 ∖ cdif 3850 ifcif 4424 {csn 4526 ∪ cuni 4806 I cid 5438 dom cdm 5535 ran crn 5536 ‘cfv 6350 pmTrspcpmtr 18700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-ord 6186 df-on 6187 df-lim 6188 df-suc 6189 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-om 7613 df-1o 8144 df-2o 8145 df-er 8333 df-en 8569 df-dom 8570 df-sdom 8571 df-fin 8572 df-pmtr 18701 |
This theorem is referenced by: pmtrdifel 18739 pmtrdifwrdellem3 18742 |
Copyright terms: Public domain | W3C validator |