Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poml5N Structured version   Visualization version   GIF version

Theorem poml5N 39978
Description: Orthomodular law for projective lattices. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
poml4.a 𝐴 = (Atoms‘𝐾)
poml4.p = (⊥𝑃𝐾)
Assertion
Ref Expression
poml5N ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (( ‘(( 𝑋) ∩ ( 𝑌))) ∩ ( 𝑌)) = ( ‘( 𝑋)))

Proof of Theorem poml5N
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝐾 ∈ HL)
2 simp3 1138 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝑋 ⊆ ( 𝑌))
3 poml4.a . . . . . 6 𝐴 = (Atoms‘𝐾)
4 poml4.p . . . . . 6 = (⊥𝑃𝐾)
53, 4polssatN 39932 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( 𝑌) ⊆ 𝐴)
653adant3 1132 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → ( 𝑌) ⊆ 𝐴)
72, 6sstrd 3974 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝑋𝐴)
81, 7, 63jca 1128 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝐾 ∈ HL ∧ 𝑋𝐴 ∧ ( 𝑌) ⊆ 𝐴))
93, 43polN 39940 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( ‘( ‘( 𝑌))) = ( 𝑌))
1093adant3 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → ( ‘( ‘( 𝑌))) = ( 𝑌))
112, 10jca 511 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑋 ⊆ ( 𝑌) ∧ ( ‘( ‘( 𝑌))) = ( 𝑌)))
123, 4poml4N 39977 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ ( 𝑌) ⊆ 𝐴) → ((𝑋 ⊆ ( 𝑌) ∧ ( ‘( ‘( 𝑌))) = ( 𝑌)) → (( ‘(( 𝑋) ∩ ( 𝑌))) ∩ ( 𝑌)) = ( ‘( 𝑋))))
138, 11, 12sylc 65 1 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (( ‘(( 𝑋) ∩ ( 𝑌))) ∩ ( 𝑌)) = ( ‘( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3930  wss 3931  cfv 6536  Atomscatm 39286  HLchlt 39373  𝑃cpolN 39926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-psubsp 39527  df-pmap 39528  df-polarityN 39927
This theorem is referenced by:  osumcllem3N  39982
  Copyright terms: Public domain W3C validator