Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poml5N Structured version   Visualization version   GIF version

Theorem poml5N 37162
Description: Orthomodular law for projective lattices. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
poml4.a 𝐴 = (Atoms‘𝐾)
poml4.p = (⊥𝑃𝐾)
Assertion
Ref Expression
poml5N ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (( ‘(( 𝑋) ∩ ( 𝑌))) ∩ ( 𝑌)) = ( ‘( 𝑋)))

Proof of Theorem poml5N
StepHypRef Expression
1 simp1 1133 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝐾 ∈ HL)
2 simp3 1135 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝑋 ⊆ ( 𝑌))
3 poml4.a . . . . . 6 𝐴 = (Atoms‘𝐾)
4 poml4.p . . . . . 6 = (⊥𝑃𝐾)
53, 4polssatN 37116 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( 𝑌) ⊆ 𝐴)
653adant3 1129 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → ( 𝑌) ⊆ 𝐴)
72, 6sstrd 3963 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝑋𝐴)
81, 7, 63jca 1125 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝐾 ∈ HL ∧ 𝑋𝐴 ∧ ( 𝑌) ⊆ 𝐴))
93, 43polN 37124 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( ‘( ‘( 𝑌))) = ( 𝑌))
1093adant3 1129 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → ( ‘( ‘( 𝑌))) = ( 𝑌))
112, 10jca 515 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑋 ⊆ ( 𝑌) ∧ ( ‘( ‘( 𝑌))) = ( 𝑌)))
123, 4poml4N 37161 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ ( 𝑌) ⊆ 𝐴) → ((𝑋 ⊆ ( 𝑌) ∧ ( ‘( ‘( 𝑌))) = ( 𝑌)) → (( ‘(( 𝑋) ∩ ( 𝑌))) ∩ ( 𝑌)) = ( ‘( 𝑋))))
138, 11, 12sylc 65 1 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (( ‘(( 𝑋) ∩ ( 𝑌))) ∩ ( 𝑌)) = ( ‘( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  cin 3918  wss 3919  cfv 6344  Atomscatm 36471  HLchlt 36558  𝑃cpolN 37110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-riotaBAD 36161
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-undef 7931  df-proset 17536  df-poset 17554  df-plt 17566  df-lub 17582  df-glb 17583  df-join 17584  df-meet 17585  df-p0 17647  df-p1 17648  df-lat 17654  df-clat 17716  df-oposet 36384  df-ol 36386  df-oml 36387  df-covers 36474  df-ats 36475  df-atl 36506  df-cvlat 36530  df-hlat 36559  df-psubsp 36711  df-pmap 36712  df-polarityN 37111
This theorem is referenced by:  osumcllem3N  37166
  Copyright terms: Public domain W3C validator