Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poml5N Structured version   Visualization version   GIF version

Theorem poml5N 38820
Description: Orthomodular law for projective lattices. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
poml4.a 𝐴 = (Atomsβ€˜πΎ)
poml4.p βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
Assertion
Ref Expression
poml5N ((𝐾 ∈ HL ∧ π‘Œ βŠ† 𝐴 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ (( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))) ∩ ( βŠ₯ β€˜π‘Œ)) = ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)))

Proof of Theorem poml5N
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ π‘Œ βŠ† 𝐴 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ 𝐾 ∈ HL)
2 simp3 1138 . . . 4 ((𝐾 ∈ HL ∧ π‘Œ βŠ† 𝐴 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ))
3 poml4.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
4 poml4.p . . . . . 6 βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
53, 4polssatN 38774 . . . . 5 ((𝐾 ∈ HL ∧ π‘Œ βŠ† 𝐴) β†’ ( βŠ₯ β€˜π‘Œ) βŠ† 𝐴)
653adant3 1132 . . . 4 ((𝐾 ∈ HL ∧ π‘Œ βŠ† 𝐴 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ ( βŠ₯ β€˜π‘Œ) βŠ† 𝐴)
72, 6sstrd 3992 . . 3 ((𝐾 ∈ HL ∧ π‘Œ βŠ† 𝐴 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ 𝑋 βŠ† 𝐴)
81, 7, 63jca 1128 . 2 ((𝐾 ∈ HL ∧ π‘Œ βŠ† 𝐴 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ (𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜π‘Œ) βŠ† 𝐴))
93, 43polN 38782 . . . 4 ((𝐾 ∈ HL ∧ π‘Œ βŠ† 𝐴) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜( βŠ₯ β€˜π‘Œ))) = ( βŠ₯ β€˜π‘Œ))
1093adant3 1132 . . 3 ((𝐾 ∈ HL ∧ π‘Œ βŠ† 𝐴 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜( βŠ₯ β€˜π‘Œ))) = ( βŠ₯ β€˜π‘Œ))
112, 10jca 512 . 2 ((𝐾 ∈ HL ∧ π‘Œ βŠ† 𝐴 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ ( βŠ₯ β€˜( βŠ₯ β€˜( βŠ₯ β€˜π‘Œ))) = ( βŠ₯ β€˜π‘Œ)))
123, 4poml4N 38819 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜π‘Œ) βŠ† 𝐴) β†’ ((𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ ( βŠ₯ β€˜( βŠ₯ β€˜( βŠ₯ β€˜π‘Œ))) = ( βŠ₯ β€˜π‘Œ)) β†’ (( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))) ∩ ( βŠ₯ β€˜π‘Œ)) = ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹))))
138, 11, 12sylc 65 1 ((𝐾 ∈ HL ∧ π‘Œ βŠ† 𝐴 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ (( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))) ∩ ( βŠ₯ β€˜π‘Œ)) = ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   ∩ cin 3947   βŠ† wss 3948  β€˜cfv 6543  Atomscatm 38128  HLchlt 38215  βŠ₯𝑃cpolN 38768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-psubsp 38369  df-pmap 38370  df-polarityN 38769
This theorem is referenced by:  osumcllem3N  38824
  Copyright terms: Public domain W3C validator