|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > poml5N | Structured version Visualization version GIF version | ||
| Description: Orthomodular law for projective lattices. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| poml4.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| poml4.p | ⊢ ⊥ = (⊥𝑃‘𝐾) | 
| Ref | Expression | 
|---|---|
| poml5N | ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌))) ∩ ( ⊥ ‘𝑌)) = ( ⊥ ‘( ⊥ ‘𝑋))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝐾 ∈ HL) | |
| 2 | simp3 1138 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑋 ⊆ ( ⊥ ‘𝑌)) | |
| 3 | poml4.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | poml4.p | . . . . . 6 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 5 | 3, 4 | polssatN 39911 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘𝑌) ⊆ 𝐴) | 
| 6 | 5 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘𝑌) ⊆ 𝐴) | 
| 7 | 2, 6 | sstrd 3993 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑋 ⊆ 𝐴) | 
| 8 | 1, 7, 6 | 3jca 1128 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘𝑌) ⊆ 𝐴)) | 
| 9 | 3, 4 | 3polN 39919 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑌))) = ( ⊥ ‘𝑌)) | 
| 10 | 9 | 3adant3 1132 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑌))) = ( ⊥ ‘𝑌)) | 
| 11 | 2, 10 | jca 511 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑌))) = ( ⊥ ‘𝑌))) | 
| 12 | 3, 4 | poml4N 39956 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘𝑌) ⊆ 𝐴) → ((𝑋 ⊆ ( ⊥ ‘𝑌) ∧ ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑌))) = ( ⊥ ‘𝑌)) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌))) ∩ ( ⊥ ‘𝑌)) = ( ⊥ ‘( ⊥ ‘𝑋)))) | 
| 13 | 8, 11, 12 | sylc 65 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌))) ∩ ( ⊥ ‘𝑌)) = ( ⊥ ‘( ⊥ ‘𝑋))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∩ cin 3949 ⊆ wss 3950 ‘cfv 6560 Atomscatm 39265 HLchlt 39352 ⊥𝑃cpolN 39905 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-proset 18341 df-poset 18360 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-p1 18472 df-lat 18478 df-clat 18545 df-oposet 39178 df-ol 39180 df-oml 39181 df-covers 39268 df-ats 39269 df-atl 39300 df-cvlat 39324 df-hlat 39353 df-psubsp 39506 df-pmap 39507 df-polarityN 39906 | 
| This theorem is referenced by: osumcllem3N 39961 | 
| Copyright terms: Public domain | W3C validator |