Step | Hyp | Ref
| Expression |
1 | | precsexlem.3 |
. . 3
โข ๐
= (2nd โ ๐น) |
2 | 1 | fveq1i 6892 |
. 2
โข (๐
โโ
) =
((2nd โ ๐น)โโ
) |
3 | | rdgfnon 8422 |
. . . 4
โข
rec((๐ โ V
โฆ โฆ(1st โ๐) / ๐โฆโฆ(2nd
โ๐) / ๐โฆโจ(๐ โช ({๐ โฃ โ๐ฅ๐
โ ( R โ๐ด)โ๐ฆ๐ฟ โ ๐ ๐ = (( 1s +s ((๐ฅ๐
-s ๐ด)
ยทs ๐ฆ๐ฟ)) /su
๐ฅ๐
)}
โช {๐ โฃ
โ๐ฅ๐ฟ โ {๐ฅ โ ( L โ๐ด) โฃ 0s <s
๐ฅ}โ๐ฆ๐
โ ๐ ๐ = (( 1s +s ((๐ฅ๐ฟ
-s ๐ด)
ยทs ๐ฆ๐
)) /su
๐ฅ๐ฟ)})),
(๐ โช ({๐ โฃ โ๐ฅ๐ฟ โ
{๐ฅ โ ( L โ๐ด) โฃ 0s <s
๐ฅ}โ๐ฆ๐ฟ โ ๐ ๐ = (( 1s +s ((๐ฅ๐ฟ
-s ๐ด)
ยทs ๐ฆ๐ฟ)) /su
๐ฅ๐ฟ)}
โช {๐ โฃ
โ๐ฅ๐
โ ( R โ๐ด)โ๐ฆ๐
โ ๐ ๐ = (( 1s +s ((๐ฅ๐
-s ๐ด)
ยทs ๐ฆ๐
)) /su
๐ฅ๐
)}))โฉ), โจ{
0s }, โ
โฉ) Fn On |
4 | | precsexlem.1 |
. . . . 5
โข ๐น = rec((๐ โ V โฆ
โฆ(1st โ๐) / ๐โฆโฆ(2nd
โ๐) / ๐โฆโจ(๐ โช ({๐ โฃ โ๐ฅ๐
โ ( R โ๐ด)โ๐ฆ๐ฟ โ ๐ ๐ = (( 1s +s ((๐ฅ๐
-s ๐ด)
ยทs ๐ฆ๐ฟ)) /su
๐ฅ๐
)}
โช {๐ โฃ
โ๐ฅ๐ฟ โ {๐ฅ โ ( L โ๐ด) โฃ 0s <s
๐ฅ}โ๐ฆ๐
โ ๐ ๐ = (( 1s +s ((๐ฅ๐ฟ
-s ๐ด)
ยทs ๐ฆ๐
)) /su
๐ฅ๐ฟ)})),
(๐ โช ({๐ โฃ โ๐ฅ๐ฟ โ
{๐ฅ โ ( L โ๐ด) โฃ 0s <s
๐ฅ}โ๐ฆ๐ฟ โ ๐ ๐ = (( 1s +s ((๐ฅ๐ฟ
-s ๐ด)
ยทs ๐ฆ๐ฟ)) /su
๐ฅ๐ฟ)}
โช {๐ โฃ
โ๐ฅ๐
โ ( R โ๐ด)โ๐ฆ๐
โ ๐ ๐ = (( 1s +s ((๐ฅ๐
-s ๐ด)
ยทs ๐ฆ๐
)) /su
๐ฅ๐
)}))โฉ), โจ{
0s }, โ
โฉ) |
5 | 4 | fneq1i 6646 |
. . . 4
โข (๐น Fn On โ rec((๐ โ V โฆ
โฆ(1st โ๐) / ๐โฆโฆ(2nd
โ๐) / ๐โฆโจ(๐ โช ({๐ โฃ โ๐ฅ๐
โ ( R โ๐ด)โ๐ฆ๐ฟ โ ๐ ๐ = (( 1s +s ((๐ฅ๐
-s ๐ด)
ยทs ๐ฆ๐ฟ)) /su
๐ฅ๐
)}
โช {๐ โฃ
โ๐ฅ๐ฟ โ {๐ฅ โ ( L โ๐ด) โฃ 0s <s
๐ฅ}โ๐ฆ๐
โ ๐ ๐ = (( 1s +s ((๐ฅ๐ฟ
-s ๐ด)
ยทs ๐ฆ๐
)) /su
๐ฅ๐ฟ)})),
(๐ โช ({๐ โฃ โ๐ฅ๐ฟ โ
{๐ฅ โ ( L โ๐ด) โฃ 0s <s
๐ฅ}โ๐ฆ๐ฟ โ ๐ ๐ = (( 1s +s ((๐ฅ๐ฟ
-s ๐ด)
ยทs ๐ฆ๐ฟ)) /su
๐ฅ๐ฟ)}
โช {๐ โฃ
โ๐ฅ๐
โ ( R โ๐ด)โ๐ฆ๐
โ ๐ ๐ = (( 1s +s ((๐ฅ๐
-s ๐ด)
ยทs ๐ฆ๐
)) /su
๐ฅ๐
)}))โฉ), โจ{
0s }, โ
โฉ) Fn On) |
6 | 3, 5 | mpbir 230 |
. . 3
โข ๐น Fn On |
7 | | 0elon 6418 |
. . 3
โข โ
โ On |
8 | | fvco2 6988 |
. . 3
โข ((๐น Fn On โง โ
โ On)
โ ((2nd โ ๐น)โโ
) = (2nd
โ(๐นโโ
))) |
9 | 6, 7, 8 | mp2an 689 |
. 2
โข
((2nd โ ๐น)โโ
) = (2nd
โ(๐นโโ
)) |
10 | 4 | fveq1i 6892 |
. . . . 5
โข (๐นโโ
) = (rec((๐ โ V โฆ
โฆ(1st โ๐) / ๐โฆโฆ(2nd
โ๐) / ๐โฆโจ(๐ โช ({๐ โฃ โ๐ฅ๐
โ ( R โ๐ด)โ๐ฆ๐ฟ โ ๐ ๐ = (( 1s +s ((๐ฅ๐
-s ๐ด)
ยทs ๐ฆ๐ฟ)) /su
๐ฅ๐
)}
โช {๐ โฃ
โ๐ฅ๐ฟ โ {๐ฅ โ ( L โ๐ด) โฃ 0s <s
๐ฅ}โ๐ฆ๐
โ ๐ ๐ = (( 1s +s ((๐ฅ๐ฟ
-s ๐ด)
ยทs ๐ฆ๐
)) /su
๐ฅ๐ฟ)})),
(๐ โช ({๐ โฃ โ๐ฅ๐ฟ โ
{๐ฅ โ ( L โ๐ด) โฃ 0s <s
๐ฅ}โ๐ฆ๐ฟ โ ๐ ๐ = (( 1s +s ((๐ฅ๐ฟ
-s ๐ด)
ยทs ๐ฆ๐ฟ)) /su
๐ฅ๐ฟ)}
โช {๐ โฃ
โ๐ฅ๐
โ ( R โ๐ด)โ๐ฆ๐
โ ๐ ๐ = (( 1s +s ((๐ฅ๐
-s ๐ด)
ยทs ๐ฆ๐
)) /su
๐ฅ๐
)}))โฉ), โจ{
0s }, โ
โฉ)โโ
) |
11 | | opex 5464 |
. . . . . 6
โข โจ{
0s }, โ
โฉ โ V |
12 | 11 | rdg0 8425 |
. . . . 5
โข
(rec((๐ โ V
โฆ โฆ(1st โ๐) / ๐โฆโฆ(2nd
โ๐) / ๐โฆโจ(๐ โช ({๐ โฃ โ๐ฅ๐
โ ( R โ๐ด)โ๐ฆ๐ฟ โ ๐ ๐ = (( 1s +s ((๐ฅ๐
-s ๐ด)
ยทs ๐ฆ๐ฟ)) /su
๐ฅ๐
)}
โช {๐ โฃ
โ๐ฅ๐ฟ โ {๐ฅ โ ( L โ๐ด) โฃ 0s <s
๐ฅ}โ๐ฆ๐
โ ๐ ๐ = (( 1s +s ((๐ฅ๐ฟ
-s ๐ด)
ยทs ๐ฆ๐
)) /su
๐ฅ๐ฟ)})),
(๐ โช ({๐ โฃ โ๐ฅ๐ฟ โ
{๐ฅ โ ( L โ๐ด) โฃ 0s <s
๐ฅ}โ๐ฆ๐ฟ โ ๐ ๐ = (( 1s +s ((๐ฅ๐ฟ
-s ๐ด)
ยทs ๐ฆ๐ฟ)) /su
๐ฅ๐ฟ)}
โช {๐ โฃ
โ๐ฅ๐
โ ( R โ๐ด)โ๐ฆ๐
โ ๐ ๐ = (( 1s +s ((๐ฅ๐
-s ๐ด)
ยทs ๐ฆ๐
)) /su
๐ฅ๐
)}))โฉ), โจ{
0s }, โ
โฉ)โโ
) = โจ{ 0s },
โ
โฉ |
13 | 10, 12 | eqtri 2759 |
. . . 4
โข (๐นโโ
) = โจ{
0s }, โ
โฉ |
14 | 13 | fveq2i 6894 |
. . 3
โข
(2nd โ(๐นโโ
)) = (2nd
โโจ{ 0s }, โ
โฉ) |
15 | | snex 5431 |
. . . 4
โข {
0s } โ V |
16 | | 0ex 5307 |
. . . 4
โข โ
โ V |
17 | 15, 16 | op2nd 7988 |
. . 3
โข
(2nd โโจ{ 0s }, โ
โฉ) =
โ
|
18 | 14, 17 | eqtri 2759 |
. 2
โข
(2nd โ(๐นโโ
)) = โ
|
19 | 2, 9, 18 | 3eqtri 2763 |
1
โข (๐
โโ
) =
โ
|