MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem2 Structured version   Visualization version   GIF version

Theorem precsexlem2 27894
Description: Lemma for surreal reciprocals. Calculate the value of the recursive right function at zero. (Contributed by Scott Fenton, 13-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 ๐น = rec((๐‘ โˆˆ V โ†ฆ โฆ‹(1st โ€˜๐‘) / ๐‘™โฆŒโฆ‹(2nd โ€˜๐‘) / ๐‘ŸโฆŒโŸจ(๐‘™ โˆช ({๐‘Ž โˆฃ โˆƒ๐‘ฅ๐‘… โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ฆ๐ฟ โˆˆ ๐‘™ ๐‘Ž = (( 1s +s ((๐‘ฅ๐‘… -s ๐ด) ยทs ๐‘ฆ๐ฟ)) /su ๐‘ฅ๐‘…)} โˆช {๐‘Ž โˆฃ โˆƒ๐‘ฅ๐ฟ โˆˆ {๐‘ฅ โˆˆ ( L โ€˜๐ด) โˆฃ 0s <s ๐‘ฅ}โˆƒ๐‘ฆ๐‘… โˆˆ ๐‘Ÿ ๐‘Ž = (( 1s +s ((๐‘ฅ๐ฟ -s ๐ด) ยทs ๐‘ฆ๐‘…)) /su ๐‘ฅ๐ฟ)})), (๐‘Ÿ โˆช ({๐‘Ž โˆฃ โˆƒ๐‘ฅ๐ฟ โˆˆ {๐‘ฅ โˆˆ ( L โ€˜๐ด) โˆฃ 0s <s ๐‘ฅ}โˆƒ๐‘ฆ๐ฟ โˆˆ ๐‘™ ๐‘Ž = (( 1s +s ((๐‘ฅ๐ฟ -s ๐ด) ยทs ๐‘ฆ๐ฟ)) /su ๐‘ฅ๐ฟ)} โˆช {๐‘Ž โˆฃ โˆƒ๐‘ฅ๐‘… โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ฆ๐‘… โˆˆ ๐‘Ÿ ๐‘Ž = (( 1s +s ((๐‘ฅ๐‘… -s ๐ด) ยทs ๐‘ฆ๐‘…)) /su ๐‘ฅ๐‘…)}))โŸฉ), โŸจ{ 0s }, โˆ…โŸฉ)
precsexlem.2 ๐ฟ = (1st โˆ˜ ๐น)
precsexlem.3 ๐‘… = (2nd โˆ˜ ๐น)
Assertion
Ref Expression
precsexlem2 (๐‘…โ€˜โˆ…) = โˆ…

Proof of Theorem precsexlem2
StepHypRef Expression
1 precsexlem.3 . . 3 ๐‘… = (2nd โˆ˜ ๐น)
21fveq1i 6892 . 2 (๐‘…โ€˜โˆ…) = ((2nd โˆ˜ ๐น)โ€˜โˆ…)
3 rdgfnon 8422 . . . 4 rec((๐‘ โˆˆ V โ†ฆ โฆ‹(1st โ€˜๐‘) / ๐‘™โฆŒโฆ‹(2nd โ€˜๐‘) / ๐‘ŸโฆŒโŸจ(๐‘™ โˆช ({๐‘Ž โˆฃ โˆƒ๐‘ฅ๐‘… โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ฆ๐ฟ โˆˆ ๐‘™ ๐‘Ž = (( 1s +s ((๐‘ฅ๐‘… -s ๐ด) ยทs ๐‘ฆ๐ฟ)) /su ๐‘ฅ๐‘…)} โˆช {๐‘Ž โˆฃ โˆƒ๐‘ฅ๐ฟ โˆˆ {๐‘ฅ โˆˆ ( L โ€˜๐ด) โˆฃ 0s <s ๐‘ฅ}โˆƒ๐‘ฆ๐‘… โˆˆ ๐‘Ÿ ๐‘Ž = (( 1s +s ((๐‘ฅ๐ฟ -s ๐ด) ยทs ๐‘ฆ๐‘…)) /su ๐‘ฅ๐ฟ)})), (๐‘Ÿ โˆช ({๐‘Ž โˆฃ โˆƒ๐‘ฅ๐ฟ โˆˆ {๐‘ฅ โˆˆ ( L โ€˜๐ด) โˆฃ 0s <s ๐‘ฅ}โˆƒ๐‘ฆ๐ฟ โˆˆ ๐‘™ ๐‘Ž = (( 1s +s ((๐‘ฅ๐ฟ -s ๐ด) ยทs ๐‘ฆ๐ฟ)) /su ๐‘ฅ๐ฟ)} โˆช {๐‘Ž โˆฃ โˆƒ๐‘ฅ๐‘… โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ฆ๐‘… โˆˆ ๐‘Ÿ ๐‘Ž = (( 1s +s ((๐‘ฅ๐‘… -s ๐ด) ยทs ๐‘ฆ๐‘…)) /su ๐‘ฅ๐‘…)}))โŸฉ), โŸจ{ 0s }, โˆ…โŸฉ) Fn On
4 precsexlem.1 . . . . 5 ๐น = rec((๐‘ โˆˆ V โ†ฆ โฆ‹(1st โ€˜๐‘) / ๐‘™โฆŒโฆ‹(2nd โ€˜๐‘) / ๐‘ŸโฆŒโŸจ(๐‘™ โˆช ({๐‘Ž โˆฃ โˆƒ๐‘ฅ๐‘… โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ฆ๐ฟ โˆˆ ๐‘™ ๐‘Ž = (( 1s +s ((๐‘ฅ๐‘… -s ๐ด) ยทs ๐‘ฆ๐ฟ)) /su ๐‘ฅ๐‘…)} โˆช {๐‘Ž โˆฃ โˆƒ๐‘ฅ๐ฟ โˆˆ {๐‘ฅ โˆˆ ( L โ€˜๐ด) โˆฃ 0s <s ๐‘ฅ}โˆƒ๐‘ฆ๐‘… โˆˆ ๐‘Ÿ ๐‘Ž = (( 1s +s ((๐‘ฅ๐ฟ -s ๐ด) ยทs ๐‘ฆ๐‘…)) /su ๐‘ฅ๐ฟ)})), (๐‘Ÿ โˆช ({๐‘Ž โˆฃ โˆƒ๐‘ฅ๐ฟ โˆˆ {๐‘ฅ โˆˆ ( L โ€˜๐ด) โˆฃ 0s <s ๐‘ฅ}โˆƒ๐‘ฆ๐ฟ โˆˆ ๐‘™ ๐‘Ž = (( 1s +s ((๐‘ฅ๐ฟ -s ๐ด) ยทs ๐‘ฆ๐ฟ)) /su ๐‘ฅ๐ฟ)} โˆช {๐‘Ž โˆฃ โˆƒ๐‘ฅ๐‘… โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ฆ๐‘… โˆˆ ๐‘Ÿ ๐‘Ž = (( 1s +s ((๐‘ฅ๐‘… -s ๐ด) ยทs ๐‘ฆ๐‘…)) /su ๐‘ฅ๐‘…)}))โŸฉ), โŸจ{ 0s }, โˆ…โŸฉ)
54fneq1i 6646 . . . 4 (๐น Fn On โ†” rec((๐‘ โˆˆ V โ†ฆ โฆ‹(1st โ€˜๐‘) / ๐‘™โฆŒโฆ‹(2nd โ€˜๐‘) / ๐‘ŸโฆŒโŸจ(๐‘™ โˆช ({๐‘Ž โˆฃ โˆƒ๐‘ฅ๐‘… โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ฆ๐ฟ โˆˆ ๐‘™ ๐‘Ž = (( 1s +s ((๐‘ฅ๐‘… -s ๐ด) ยทs ๐‘ฆ๐ฟ)) /su ๐‘ฅ๐‘…)} โˆช {๐‘Ž โˆฃ โˆƒ๐‘ฅ๐ฟ โˆˆ {๐‘ฅ โˆˆ ( L โ€˜๐ด) โˆฃ 0s <s ๐‘ฅ}โˆƒ๐‘ฆ๐‘… โˆˆ ๐‘Ÿ ๐‘Ž = (( 1s +s ((๐‘ฅ๐ฟ -s ๐ด) ยทs ๐‘ฆ๐‘…)) /su ๐‘ฅ๐ฟ)})), (๐‘Ÿ โˆช ({๐‘Ž โˆฃ โˆƒ๐‘ฅ๐ฟ โˆˆ {๐‘ฅ โˆˆ ( L โ€˜๐ด) โˆฃ 0s <s ๐‘ฅ}โˆƒ๐‘ฆ๐ฟ โˆˆ ๐‘™ ๐‘Ž = (( 1s +s ((๐‘ฅ๐ฟ -s ๐ด) ยทs ๐‘ฆ๐ฟ)) /su ๐‘ฅ๐ฟ)} โˆช {๐‘Ž โˆฃ โˆƒ๐‘ฅ๐‘… โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ฆ๐‘… โˆˆ ๐‘Ÿ ๐‘Ž = (( 1s +s ((๐‘ฅ๐‘… -s ๐ด) ยทs ๐‘ฆ๐‘…)) /su ๐‘ฅ๐‘…)}))โŸฉ), โŸจ{ 0s }, โˆ…โŸฉ) Fn On)
63, 5mpbir 230 . . 3 ๐น Fn On
7 0elon 6418 . . 3 โˆ… โˆˆ On
8 fvco2 6988 . . 3 ((๐น Fn On โˆง โˆ… โˆˆ On) โ†’ ((2nd โˆ˜ ๐น)โ€˜โˆ…) = (2nd โ€˜(๐นโ€˜โˆ…)))
96, 7, 8mp2an 689 . 2 ((2nd โˆ˜ ๐น)โ€˜โˆ…) = (2nd โ€˜(๐นโ€˜โˆ…))
104fveq1i 6892 . . . . 5 (๐นโ€˜โˆ…) = (rec((๐‘ โˆˆ V โ†ฆ โฆ‹(1st โ€˜๐‘) / ๐‘™โฆŒโฆ‹(2nd โ€˜๐‘) / ๐‘ŸโฆŒโŸจ(๐‘™ โˆช ({๐‘Ž โˆฃ โˆƒ๐‘ฅ๐‘… โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ฆ๐ฟ โˆˆ ๐‘™ ๐‘Ž = (( 1s +s ((๐‘ฅ๐‘… -s ๐ด) ยทs ๐‘ฆ๐ฟ)) /su ๐‘ฅ๐‘…)} โˆช {๐‘Ž โˆฃ โˆƒ๐‘ฅ๐ฟ โˆˆ {๐‘ฅ โˆˆ ( L โ€˜๐ด) โˆฃ 0s <s ๐‘ฅ}โˆƒ๐‘ฆ๐‘… โˆˆ ๐‘Ÿ ๐‘Ž = (( 1s +s ((๐‘ฅ๐ฟ -s ๐ด) ยทs ๐‘ฆ๐‘…)) /su ๐‘ฅ๐ฟ)})), (๐‘Ÿ โˆช ({๐‘Ž โˆฃ โˆƒ๐‘ฅ๐ฟ โˆˆ {๐‘ฅ โˆˆ ( L โ€˜๐ด) โˆฃ 0s <s ๐‘ฅ}โˆƒ๐‘ฆ๐ฟ โˆˆ ๐‘™ ๐‘Ž = (( 1s +s ((๐‘ฅ๐ฟ -s ๐ด) ยทs ๐‘ฆ๐ฟ)) /su ๐‘ฅ๐ฟ)} โˆช {๐‘Ž โˆฃ โˆƒ๐‘ฅ๐‘… โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ฆ๐‘… โˆˆ ๐‘Ÿ ๐‘Ž = (( 1s +s ((๐‘ฅ๐‘… -s ๐ด) ยทs ๐‘ฆ๐‘…)) /su ๐‘ฅ๐‘…)}))โŸฉ), โŸจ{ 0s }, โˆ…โŸฉ)โ€˜โˆ…)
11 opex 5464 . . . . . 6 โŸจ{ 0s }, โˆ…โŸฉ โˆˆ V
1211rdg0 8425 . . . . 5 (rec((๐‘ โˆˆ V โ†ฆ โฆ‹(1st โ€˜๐‘) / ๐‘™โฆŒโฆ‹(2nd โ€˜๐‘) / ๐‘ŸโฆŒโŸจ(๐‘™ โˆช ({๐‘Ž โˆฃ โˆƒ๐‘ฅ๐‘… โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ฆ๐ฟ โˆˆ ๐‘™ ๐‘Ž = (( 1s +s ((๐‘ฅ๐‘… -s ๐ด) ยทs ๐‘ฆ๐ฟ)) /su ๐‘ฅ๐‘…)} โˆช {๐‘Ž โˆฃ โˆƒ๐‘ฅ๐ฟ โˆˆ {๐‘ฅ โˆˆ ( L โ€˜๐ด) โˆฃ 0s <s ๐‘ฅ}โˆƒ๐‘ฆ๐‘… โˆˆ ๐‘Ÿ ๐‘Ž = (( 1s +s ((๐‘ฅ๐ฟ -s ๐ด) ยทs ๐‘ฆ๐‘…)) /su ๐‘ฅ๐ฟ)})), (๐‘Ÿ โˆช ({๐‘Ž โˆฃ โˆƒ๐‘ฅ๐ฟ โˆˆ {๐‘ฅ โˆˆ ( L โ€˜๐ด) โˆฃ 0s <s ๐‘ฅ}โˆƒ๐‘ฆ๐ฟ โˆˆ ๐‘™ ๐‘Ž = (( 1s +s ((๐‘ฅ๐ฟ -s ๐ด) ยทs ๐‘ฆ๐ฟ)) /su ๐‘ฅ๐ฟ)} โˆช {๐‘Ž โˆฃ โˆƒ๐‘ฅ๐‘… โˆˆ ( R โ€˜๐ด)โˆƒ๐‘ฆ๐‘… โˆˆ ๐‘Ÿ ๐‘Ž = (( 1s +s ((๐‘ฅ๐‘… -s ๐ด) ยทs ๐‘ฆ๐‘…)) /su ๐‘ฅ๐‘…)}))โŸฉ), โŸจ{ 0s }, โˆ…โŸฉ)โ€˜โˆ…) = โŸจ{ 0s }, โˆ…โŸฉ
1310, 12eqtri 2759 . . . 4 (๐นโ€˜โˆ…) = โŸจ{ 0s }, โˆ…โŸฉ
1413fveq2i 6894 . . 3 (2nd โ€˜(๐นโ€˜โˆ…)) = (2nd โ€˜โŸจ{ 0s }, โˆ…โŸฉ)
15 snex 5431 . . . 4 { 0s } โˆˆ V
16 0ex 5307 . . . 4 โˆ… โˆˆ V
1715, 16op2nd 7988 . . 3 (2nd โ€˜โŸจ{ 0s }, โˆ…โŸฉ) = โˆ…
1814, 17eqtri 2759 . 2 (2nd โ€˜(๐นโ€˜โˆ…)) = โˆ…
192, 9, 183eqtri 2763 1 (๐‘…โ€˜โˆ…) = โˆ…
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   โˆˆ wcel 2105  {cab 2708  โˆƒwrex 3069  {crab 3431  Vcvv 3473  โฆ‹csb 3893   โˆช cun 3946  โˆ…c0 4322  {csn 4628  โŸจcop 4634   class class class wbr 5148   โ†ฆ cmpt 5231   โˆ˜ ccom 5680  Oncon0 6364   Fn wfn 6538  โ€˜cfv 6543  (class class class)co 7412  1st c1st 7977  2nd c2nd 7978  reccrdg 8413   <s cslt 27381   0s c0s 27561   1s c1s 27562   L cleft 27578   R cright 27579   +s cadds 27682   -s csubs 27735   ยทs cmuls 27802   /su cdivs 27875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414
This theorem is referenced by:  precsexlem8  27900  precsexlem9  27901
  Copyright terms: Public domain W3C validator