MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem9 Structured version   Visualization version   GIF version

Theorem precsexlem9 28117
Description: Lemma for surreal reciprocal. Show that the product of 𝐴 and a left element is less than one and the product of 𝐴 and a right element is greater than one. (Contributed by Scott Fenton, 14-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
Assertion
Ref Expression
precsexlem9 ((𝜑𝐼 ∈ ω) → (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐)))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐴,𝑏,𝑐,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑟   𝐼,𝑏,𝑐   𝐿,𝑏,𝑟   𝑅,𝑐
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝,𝑏,𝑐,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑏,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑏,𝑐,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐼(𝑥,𝑦,𝑟,𝑝,𝑎,𝑙,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑝,𝑐,𝑥𝑂)

Proof of Theorem precsexlem9
Dummy variables 𝑖 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . . 6 (𝑖 = ∅ → (𝐿𝑖) = (𝐿‘∅))
21raleqdv 3299 . . . . 5 (𝑖 = ∅ → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ))
3 fveq2 6858 . . . . . 6 (𝑖 = ∅ → (𝑅𝑖) = (𝑅‘∅))
43raleqdv 3299 . . . . 5 (𝑖 = ∅ → (∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)))
52, 4anbi12d 632 . . . 4 (𝑖 = ∅ → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐))))
65imbi2d 340 . . 3 (𝑖 = ∅ → ((𝜑 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)))))
7 fveq2 6858 . . . . . 6 (𝑖 = 𝑗 → (𝐿𝑖) = (𝐿𝑗))
87raleqdv 3299 . . . . 5 (𝑖 = 𝑗 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ))
9 fveq2 6858 . . . . . 6 (𝑖 = 𝑗 → (𝑅𝑖) = (𝑅𝑗))
109raleqdv 3299 . . . . 5 (𝑖 = 𝑗 → (∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐)))
118, 10anbi12d 632 . . . 4 (𝑖 = 𝑗 → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))))
1211imbi2d 340 . . 3 (𝑖 = 𝑗 → ((𝜑 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐)))))
13 fveq2 6858 . . . . . . 7 (𝑖 = suc 𝑗 → (𝐿𝑖) = (𝐿‘suc 𝑗))
1413raleqdv 3299 . . . . . 6 (𝑖 = suc 𝑗 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ))
15 fveq2 6858 . . . . . . 7 (𝑖 = suc 𝑗 → (𝑅𝑖) = (𝑅‘suc 𝑗))
1615raleqdv 3299 . . . . . 6 (𝑖 = suc 𝑗 → (∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐)))
1714, 16anbi12d 632 . . . . 5 (𝑖 = suc 𝑗 → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐))))
18 oveq2 7395 . . . . . . . 8 (𝑏 = 𝑟 → (𝐴 ·s 𝑏) = (𝐴 ·s 𝑟))
1918breq1d 5117 . . . . . . 7 (𝑏 = 𝑟 → ((𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 𝑟) <s 1s ))
2019cbvralvw 3215 . . . . . 6 (∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s )
21 oveq2 7395 . . . . . . . 8 (𝑐 = 𝑠 → (𝐴 ·s 𝑐) = (𝐴 ·s 𝑠))
2221breq2d 5119 . . . . . . 7 (𝑐 = 𝑠 → ( 1s <s (𝐴 ·s 𝑐) ↔ 1s <s (𝐴 ·s 𝑠)))
2322cbvralvw 3215 . . . . . 6 (∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))
2420, 23anbi12i 628 . . . . 5 ((∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))
2517, 24bitrdi 287 . . . 4 (𝑖 = suc 𝑗 → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))))
2625imbi2d 340 . . 3 (𝑖 = suc 𝑗 → ((𝜑 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))))
27 fveq2 6858 . . . . . 6 (𝑖 = 𝐼 → (𝐿𝑖) = (𝐿𝐼))
2827raleqdv 3299 . . . . 5 (𝑖 = 𝐼 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ))
29 fveq2 6858 . . . . . 6 (𝑖 = 𝐼 → (𝑅𝑖) = (𝑅𝐼))
3029raleqdv 3299 . . . . 5 (𝑖 = 𝐼 → (∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐)))
3128, 30anbi12d 632 . . . 4 (𝑖 = 𝐼 → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐))))
3231imbi2d 340 . . 3 (𝑖 = 𝐼 → ((𝜑 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐)))))
33 precsexlem.4 . . . . . . 7 (𝜑𝐴 No )
34 muls01 28015 . . . . . . 7 (𝐴 No → (𝐴 ·s 0s ) = 0s )
3533, 34syl 17 . . . . . 6 (𝜑 → (𝐴 ·s 0s ) = 0s )
36 0slt1s 27741 . . . . . 6 0s <s 1s
3735, 36eqbrtrdi 5146 . . . . 5 (𝜑 → (𝐴 ·s 0s ) <s 1s )
38 precsexlem.1 . . . . . . . 8 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
39 precsexlem.2 . . . . . . . 8 𝐿 = (1st𝐹)
40 precsexlem.3 . . . . . . . 8 𝑅 = (2nd𝐹)
4138, 39, 40precsexlem1 28109 . . . . . . 7 (𝐿‘∅) = { 0s }
4241raleqi 3297 . . . . . 6 (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ { 0s } (𝐴 ·s 𝑏) <s 1s )
43 0sno 27738 . . . . . . . 8 0s No
4443elexi 3470 . . . . . . 7 0s ∈ V
45 oveq2 7395 . . . . . . . 8 (𝑏 = 0s → (𝐴 ·s 𝑏) = (𝐴 ·s 0s ))
4645breq1d 5117 . . . . . . 7 (𝑏 = 0s → ((𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 0s ) <s 1s ))
4744, 46ralsn 4645 . . . . . 6 (∀𝑏 ∈ { 0s } (𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 0s ) <s 1s )
4842, 47bitri 275 . . . . 5 (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 0s ) <s 1s )
4937, 48sylibr 234 . . . 4 (𝜑 → ∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s )
50 ral0 4476 . . . . 5 𝑐 ∈ ∅ 1s <s (𝐴 ·s 𝑐)
5138, 39, 40precsexlem2 28110 . . . . . 6 (𝑅‘∅) = ∅
5251raleqi 3297 . . . . 5 (∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ ∅ 1s <s (𝐴 ·s 𝑐))
5350, 52mpbir 231 . . . 4 𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)
5449, 53jctir 520 . . 3 (𝜑 → (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)))
5538, 39, 40precsexlem4 28112 . . . . . . . . . . . 12 (𝑗 ∈ ω → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
56553ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
5756eleq2d 2814 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) ↔ 𝑟 ∈ ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))))
58 elun 4116 . . . . . . . . . . 11 (𝑟 ∈ ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})) ↔ (𝑟 ∈ (𝐿𝑗) ∨ 𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
59 elun 4116 . . . . . . . . . . . . 13 (𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) ↔ (𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∨ 𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
60 vex 3451 . . . . . . . . . . . . . . 15 𝑟 ∈ V
61 eqeq1 2733 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑟 → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ 𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
62612rexbidv 3202 . . . . . . . . . . . . . . 15 (𝑎 = 𝑟 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
6360, 62elab 3646 . . . . . . . . . . . . . 14 (𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
64 eqeq1 2733 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑟 → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ 𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
65642rexbidv 3202 . . . . . . . . . . . . . . 15 (𝑎 = 𝑟 → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
6660, 65elab 3646 . . . . . . . . . . . . . 14 (𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
6763, 66orbi12i 914 . . . . . . . . . . . . 13 ((𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∨ 𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
6859, 67bitri 275 . . . . . . . . . . . 12 (𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
6968orbi2i 912 . . . . . . . . . . 11 ((𝑟 ∈ (𝐿𝑗) ∨ 𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})) ↔ (𝑟 ∈ (𝐿𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))))
7058, 69bitri 275 . . . . . . . . . 10 (𝑟 ∈ ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})) ↔ (𝑟 ∈ (𝐿𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))))
7157, 70bitrdi 287 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) ↔ (𝑟 ∈ (𝐿𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))))
72 simp3l 1202 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s )
7319rspccv 3585 . . . . . . . . . . 11 (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s → (𝑟 ∈ (𝐿𝑗) → (𝐴 ·s 𝑟) <s 1s ))
7472, 73syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿𝑗) → (𝐴 ·s 𝑟) <s 1s ))
75333ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → 𝐴 No )
7675adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
77 1sno 27739 . . . . . . . . . . . . . . . . 17 1s No
7877a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
79 rightssno 27793 . . . . . . . . . . . . . . . . . . . . 21 ( R ‘𝐴) ⊆ No
8079sseli 3942 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝑥𝑅 No )
8180adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 No )
8275adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝐴 No )
8381, 82subscld 27967 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → (𝑥𝑅 -s 𝐴) ∈ No )
8483adantrr 717 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
85 precsexlem.5 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0s <s 𝐴)
86 precsexlem.6 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
8738, 39, 40, 33, 85, 86precsexlem8 28116 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ω) → ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ))
8887simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ω) → (𝐿𝑗) ⊆ No )
89883adant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝐿𝑗) ⊆ No )
9089sselda 3946 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝐿 ∈ (𝐿𝑗)) → 𝑦𝐿 No )
9190adantrl 716 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
9284, 91mulscld 28038 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) ∈ No )
9378, 92addscld 27887 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
9481adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 No )
9543a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s No )
96853ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → 0s <s 𝐴)
9796adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s 𝐴)
98 rightgt 27776 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝐴 <s 𝑥𝑅)
9998adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑥𝑅)
10095, 82, 81, 97, 99slttrd 27671 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s 𝑥𝑅)
101100sgt0ne0d 27748 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ≠ 0s )
102101adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ≠ 0s )
103 breq2 5111 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝑅))
104 oveq1 7394 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑂 = 𝑥𝑅 → (𝑥𝑂 ·s 𝑦) = (𝑥𝑅 ·s 𝑦))
105104eqeq1d 2731 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑂 = 𝑥𝑅 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝑅 ·s 𝑦) = 1s ))
106105rexbidv 3157 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
107103, 106imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝑅 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )))
108863ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
109108adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
110 elun2 4146 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
111110adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
112107, 109, 111rspcdva 3589 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
113100, 112mpd 15 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
114113adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
11576, 93, 94, 102, 114divsasswd 28106 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝑅) = (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
116 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦𝐿 → (𝐴 ·s 𝑏) = (𝐴 ·s 𝑦𝐿))
117116breq1d 5117 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑦𝐿 → ((𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 𝑦𝐿) <s 1s ))
118117rspccva 3587 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s𝑦𝐿 ∈ (𝐿𝑗)) → (𝐴 ·s 𝑦𝐿) <s 1s )
11972, 118sylan 580 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝐿 ∈ (𝐿𝑗)) → (𝐴 ·s 𝑦𝐿) <s 1s )
120119adantrl 716 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 𝑦𝐿) <s 1s )
12176, 91mulscld 28038 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 𝑦𝐿) ∈ No )
12282, 81posdifsd 28001 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → (𝐴 <s 𝑥𝑅 ↔ 0s <s (𝑥𝑅 -s 𝐴)))
12399, 122mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s (𝑥𝑅 -s 𝐴))
124123adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s (𝑥𝑅 -s 𝐴))
125121, 78, 84, 124sltmul2d 28075 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s 𝑦𝐿) <s 1s ↔ ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s ((𝑥𝑅 -s 𝐴) ·s 1s )))
126120, 125mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s ((𝑥𝑅 -s 𝐴) ·s 1s ))
12784mulsridd 28017 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 1s ) = (𝑥𝑅 -s 𝐴))
128126, 127breqtrd 5133 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s (𝑥𝑅 -s 𝐴))
12984, 121mulscld 28038 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ∈ No )
13076, 129, 94sltaddsub2d 27996 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s 𝑥𝑅 ↔ ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s (𝑥𝑅 -s 𝐴)))
131128, 130mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s 𝑥𝑅)
13276, 78, 92addsdid 28059 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))))
13376mulsridd 28017 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 1s ) = 𝐴)
13476, 84, 91muls12d 28084 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) = ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))
135133, 134oveq12d 7405 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
136132, 135eqtrd 2764 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
13794mulslidd 28046 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s ·s 𝑥𝑅) = 𝑥𝑅)
138131, 136, 1373brtr4d 5139 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) <s ( 1s ·s 𝑥𝑅))
13976, 93mulscld 28038 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) ∈ No )
140100adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝑅)
141139, 78, 94, 140, 114sltdivmul2wd 28103 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝑅) <s 1s ↔ (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) <s ( 1s ·s 𝑥𝑅)))
142138, 141mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝑅) <s 1s )
143115, 142eqbrtrrd 5131 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)) <s 1s )
144 oveq2 7395 . . . . . . . . . . . . . 14 (𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → (𝐴 ·s 𝑟) = (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
145144breq1d 5117 . . . . . . . . . . . . 13 (𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → ((𝐴 ·s 𝑟) <s 1s ↔ (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)) <s 1s ))
146143, 145syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → (𝐴 ·s 𝑟) <s 1s ))
147146rexlimdvva 3194 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → (𝐴 ·s 𝑟) <s 1s ))
14875adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
14977a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
150 leftssno 27792 . . . . . . . . . . . . . . . . . . . 20 ( L ‘𝐴) ⊆ No
151 elrabi 3654 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑥𝐿 ∈ ( L ‘𝐴))
152151adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 ∈ ( L ‘𝐴))
153150, 152sselid 3944 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 No )
15475adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝐴 No )
155153, 154subscld 27967 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑥𝐿 -s 𝐴) ∈ No )
156155adantrr 717 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
15787simprd 495 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ω) → (𝑅𝑗) ⊆ No )
1581573adant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑅𝑗) ⊆ No )
159158sselda 3946 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝑅 ∈ (𝑅𝑗)) → 𝑦𝑅 No )
160159adantrl 716 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
161156, 160mulscld 28038 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) ∈ No )
162149, 161addscld 27887 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
163153adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 No )
164 breq2 5111 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑥𝐿 → ( 0s <s 𝑥 ↔ 0s <s 𝑥𝐿))
165164elrab 3659 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ↔ (𝑥𝐿 ∈ ( L ‘𝐴) ∧ 0s <s 𝑥𝐿))
166165simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 0s <s 𝑥𝐿)
167166adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 0s <s 𝑥𝐿)
168167sgt0ne0d 27748 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 ≠ 0s )
169168adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ≠ 0s )
170 breq2 5111 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝐿))
171 oveq1 7394 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑂 = 𝑥𝐿 → (𝑥𝑂 ·s 𝑦) = (𝑥𝐿 ·s 𝑦))
172171eqeq1d 2731 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑂 = 𝑥𝐿 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝐿 ·s 𝑦) = 1s ))
173172rexbidv 3157 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
174170, 173imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝐿 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )))
175108adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
176 elun1 4145 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
177152, 176syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
178174, 175, 177rspcdva 3589 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
179167, 178mpd 15 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
180179adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
181148, 162, 163, 169, 180divsasswd 28106 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝐿) = (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
182154, 153subscld 27967 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝐴 -s 𝑥𝐿) ∈ No )
183182adantrr 717 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 -s 𝑥𝐿) ∈ No )
184183mulsridd 28017 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 -s 𝑥𝐿) ·s 1s ) = (𝐴 -s 𝑥𝐿))
185 simp3r 1203 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))
186 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = 𝑦𝑅 → (𝐴 ·s 𝑐) = (𝐴 ·s 𝑦𝑅))
187186breq2d 5119 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = 𝑦𝑅 → ( 1s <s (𝐴 ·s 𝑐) ↔ 1s <s (𝐴 ·s 𝑦𝑅)))
188187rspccva 3587 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐) ∧ 𝑦𝑅 ∈ (𝑅𝑗)) → 1s <s (𝐴 ·s 𝑦𝑅))
189185, 188sylan 580 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝑅 ∈ (𝑅𝑗)) → 1s <s (𝐴 ·s 𝑦𝑅))
190189adantrl 716 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s <s (𝐴 ·s 𝑦𝑅))
191148, 160mulscld 28038 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s 𝑦𝑅) ∈ No )
192 leftlt 27775 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 <s 𝐴)
193152, 192syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 <s 𝐴)
194153, 154posdifsd 28001 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑥𝐿 <s 𝐴 ↔ 0s <s (𝐴 -s 𝑥𝐿)))
195193, 194mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 0s <s (𝐴 -s 𝑥𝐿))
196195adantrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s (𝐴 -s 𝑥𝐿))
197149, 191, 183, 196sltmul2d 28075 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s <s (𝐴 ·s 𝑦𝑅) ↔ ((𝐴 -s 𝑥𝐿) ·s 1s ) <s ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅))))
198190, 197mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 -s 𝑥𝐿) ·s 1s ) <s ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
199184, 198eqbrtrrd 5131 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 -s 𝑥𝐿) <s ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
200153, 154negsubsdi2d 27984 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ( -us ‘(𝑥𝐿 -s 𝐴)) = (𝐴 -s 𝑥𝐿))
201200adantrr 717 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( -us ‘(𝑥𝐿 -s 𝐴)) = (𝐴 -s 𝑥𝐿))
202156, 191mulnegs1d 28063 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝑅)) = ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
203200oveq1d 7402 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝑅)) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
204203adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝑅)) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
205202, 204eqtr3d 2766 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
206199, 201, 2053brtr4d 5139 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( -us ‘(𝑥𝐿 -s 𝐴)) <s ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
207156, 191mulscld 28038 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ∈ No )
208207, 156sltnegd 27953 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s (𝑥𝐿 -s 𝐴) ↔ ( -us ‘(𝑥𝐿 -s 𝐴)) <s ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))))
209206, 208mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s (𝑥𝐿 -s 𝐴))
210148, 207, 163sltaddsub2d 27996 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) <s 𝑥𝐿 ↔ ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s (𝑥𝐿 -s 𝐴)))
211209, 210mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) <s 𝑥𝐿)
212148, 149, 161addsdid 28059 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) = ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))))
213148mulsridd 28017 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s 1s ) = 𝐴)
214148, 156, 160muls12d 28084 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) = ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))
215213, 214oveq12d 7405 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
216212, 215eqtrd 2764 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
217163mulsridd 28017 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝐿 ·s 1s ) = 𝑥𝐿)
218211, 216, 2173brtr4d 5139 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) <s (𝑥𝐿 ·s 1s ))
219148, 162mulscld 28038 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) ∈ No )
220167adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝐿)
221219, 149, 163, 220, 180sltdivmulwd 28102 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝐿) <s 1s ↔ (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) <s (𝑥𝐿 ·s 1s )))
222218, 221mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝐿) <s 1s )
223181, 222eqbrtrrd 5131 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)) <s 1s )
224 oveq2 7395 . . . . . . . . . . . . . 14 (𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → (𝐴 ·s 𝑟) = (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
225224breq1d 5117 . . . . . . . . . . . . 13 (𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → ((𝐴 ·s 𝑟) <s 1s ↔ (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)) <s 1s ))
226223, 225syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → (𝐴 ·s 𝑟) <s 1s ))
227226rexlimdvva 3194 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → (𝐴 ·s 𝑟) <s 1s ))
228147, 227jaod 859 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ((∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)) → (𝐴 ·s 𝑟) <s 1s ))
22974, 228jaod 859 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ((𝑟 ∈ (𝐿𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))) → (𝐴 ·s 𝑟) <s 1s ))
23071, 229sylbid 240 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) → (𝐴 ·s 𝑟) <s 1s ))
231230ralrimiv 3124 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s )
23238, 39, 40precsexlem5 28113 . . . . . . . . . . . 12 (𝑗 ∈ ω → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
2332323ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
234233eleq2d 2814 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) ↔ 𝑠 ∈ ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))))
235 elun 4116 . . . . . . . . . . 11 (𝑠 ∈ ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})) ↔ (𝑠 ∈ (𝑅𝑗) ∨ 𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
236 elun 4116 . . . . . . . . . . . . 13 (𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) ↔ (𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∨ 𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))
237 vex 3451 . . . . . . . . . . . . . . 15 𝑠 ∈ V
238 eqeq1 2733 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑠 → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ 𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
2392382rexbidv 3202 . . . . . . . . . . . . . . 15 (𝑎 = 𝑠 → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
240237, 239elab 3646 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
241 eqeq1 2733 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑠 → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ 𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
2422412rexbidv 3202 . . . . . . . . . . . . . . 15 (𝑎 = 𝑠 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
243237, 242elab 3646 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
244240, 243orbi12i 914 . . . . . . . . . . . . 13 ((𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∨ 𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) ↔ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
245236, 244bitri 275 . . . . . . . . . . . 12 (𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) ↔ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
246245orbi2i 912 . . . . . . . . . . 11 ((𝑠 ∈ (𝑅𝑗) ∨ 𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})) ↔ (𝑠 ∈ (𝑅𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))))
247235, 246bitri 275 . . . . . . . . . 10 (𝑠 ∈ ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})) ↔ (𝑠 ∈ (𝑅𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))))
248234, 247bitrdi 287 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) ↔ (𝑠 ∈ (𝑅𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))))
24922rspccv 3585 . . . . . . . . . . 11 (∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐) → (𝑠 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑠)))
250185, 249syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑠)))
251119adantrl 716 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 𝑦𝐿) <s 1s )
25275adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
25390adantrl 716 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
254252, 253mulscld 28038 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 𝑦𝐿) ∈ No )
25577a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
256182adantrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 -s 𝑥𝐿) ∈ No )
257195adantrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s (𝐴 -s 𝑥𝐿))
258254, 255, 256, 257sltmul2d 28075 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s 𝑦𝐿) <s 1s ↔ ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)) <s ((𝐴 -s 𝑥𝐿) ·s 1s )))
259251, 258mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)) <s ((𝐴 -s 𝑥𝐿) ·s 1s ))
260256mulsridd 28017 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 -s 𝑥𝐿) ·s 1s ) = (𝐴 -s 𝑥𝐿))
261259, 260breqtrd 5133 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)) <s (𝐴 -s 𝑥𝐿))
262155adantrr 717 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
263262, 254mulnegs1d 28063 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝐿)) = ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
264200oveq1d 7402 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝐿)) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)))
265264adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝐿)) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)))
266263, 265eqtr3d 2766 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)))
267200adantrr 717 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( -us ‘(𝑥𝐿 -s 𝐴)) = (𝐴 -s 𝑥𝐿))
268261, 266, 2673brtr4d 5139 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s ( -us ‘(𝑥𝐿 -s 𝐴)))
269262, 254mulscld 28038 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ∈ No )
270262, 269sltnegd 27953 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ↔ ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s ( -us ‘(𝑥𝐿 -s 𝐴))))
271268, 270mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))
272153adantrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 No )
273272, 252, 269sltsubadd2d 27994 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ↔ 𝑥𝐿 <s (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))))
274271, 273mpbid 232 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 <s (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
275272mulslidd 28046 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s ·s 𝑥𝐿) = 𝑥𝐿)
276262, 253mulscld 28038 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) ∈ No )
277252, 255, 276addsdid 28059 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))))
278252mulsridd 28017 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 1s ) = 𝐴)
279252, 262, 253muls12d 28084 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) = ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))
280278, 279oveq12d 7405 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
281277, 280eqtrd 2764 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
282274, 275, 2813brtr4d 5139 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s ·s 𝑥𝐿) <s (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))))
283255, 276addscld 27887 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
284252, 283mulscld 28038 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) ∈ No )
285167adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝐿)
286179adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
287255, 284, 272, 285, 286sltmuldivwd 28104 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( 1s ·s 𝑥𝐿) <s (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) ↔ 1s <s ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝐿)))
288282, 287mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s <s ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝐿))
289168adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ≠ 0s )
290252, 283, 272, 289, 286divsasswd 28106 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝐿) = (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
291288, 290breqtrd 5133 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s <s (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
292 oveq2 7395 . . . . . . . . . . . . . 14 (𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → (𝐴 ·s 𝑠) = (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
293292breq2d 5119 . . . . . . . . . . . . 13 (𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → ( 1s <s (𝐴 ·s 𝑠) ↔ 1s <s (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))))
294291, 293syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 1s <s (𝐴 ·s 𝑠)))
295294rexlimdvva 3194 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 1s <s (𝐴 ·s 𝑠)))
29683adantrr 717 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
297296mulsridd 28017 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 1s ) = (𝑥𝑅 -s 𝐴))
298189adantrl 716 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s <s (𝐴 ·s 𝑦𝑅))
29977a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
30075adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
301159adantrl 716 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
302300, 301mulscld 28038 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s 𝑦𝑅) ∈ No )
303123adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s (𝑥𝑅 -s 𝐴))
304299, 302, 296, 303sltmul2d 28075 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s <s (𝐴 ·s 𝑦𝑅) ↔ ((𝑥𝑅 -s 𝐴) ·s 1s ) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
305298, 304mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 1s ) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))
306297, 305eqbrtrrd 5131 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝑅 -s 𝐴) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))
30781adantrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 No )
308296, 302mulscld 28038 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ∈ No )
309307, 300, 308sltsubadd2d 27994 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ↔ 𝑥𝑅 <s (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))))
310306, 309mpbid 232 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 <s (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
311307mulslidd 28046 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s ·s 𝑥𝑅) = 𝑥𝑅)
312296, 301mulscld 28038 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) ∈ No )
313300, 299, 312addsdid 28059 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) = ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))))
314300mulsridd 28017 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s 1s ) = 𝐴)
315300, 296, 301muls12d 28084 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) = ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))
316314, 315oveq12d 7405 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
317313, 316eqtrd 2764 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
318310, 311, 3173brtr4d 5139 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s ·s 𝑥𝑅) <s (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))))
319299, 312addscld 27887 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
320300, 319mulscld 28038 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) ∈ No )
321100adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝑅)
322113adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
323299, 320, 307, 321, 322sltmuldivwd 28104 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( 1s ·s 𝑥𝑅) <s (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) ↔ 1s <s ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝑅)))
324318, 323mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s <s ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝑅))
325101adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ≠ 0s )
326300, 319, 307, 325, 322divsasswd 28106 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝑅) = (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
327324, 326breqtrd 5133 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s <s (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
328 oveq2 7395 . . . . . . . . . . . . . 14 (𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → (𝐴 ·s 𝑠) = (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
329328breq2d 5119 . . . . . . . . . . . . 13 (𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → ( 1s <s (𝐴 ·s 𝑠) ↔ 1s <s (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))))
330327, 329syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 1s <s (𝐴 ·s 𝑠)))
331330rexlimdvva 3194 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 1s <s (𝐴 ·s 𝑠)))
332295, 331jaod 859 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ((∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)) → 1s <s (𝐴 ·s 𝑠)))
333250, 332jaod 859 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ((𝑠 ∈ (𝑅𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))) → 1s <s (𝐴 ·s 𝑠)))
334248, 333sylbid 240 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) → 1s <s (𝐴 ·s 𝑠)))
335334ralrimiv 3124 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))
336231, 335jca 511 . . . . . 6 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))
3373363exp 1119 . . . . 5 (𝜑 → (𝑗 ∈ ω → ((∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐)) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))))
338337com12 32 . . . 4 (𝑗 ∈ ω → (𝜑 → ((∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐)) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))))
339338a2d 29 . . 3 (𝑗 ∈ ω → ((𝜑 → (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝜑 → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))))
3406, 12, 26, 32, 54, 339finds 7872 . 2 (𝐼 ∈ ω → (𝜑 → (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐))))
341340impcom 407 1 ((𝜑𝐼 ∈ ω) → (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  csb 3862  cun 3912  wss 3914  c0 4296  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188  ccom 5642  suc csuc 6334  cfv 6511  (class class class)co 7387  ωcom 7842  1st c1st 7966  2nd c2nd 7967  reccrdg 8377   No csur 27551   <s cslt 27552   0s c0s 27734   1s c1s 27735   L cleft 27753   R cright 27754   +s cadds 27866   -us cnegs 27925   -s csubs 27926   ·s cmuls 28009   /su cdivs 28090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-1s 27737  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-norec2 27856  df-adds 27867  df-negs 27927  df-subs 27928  df-muls 28010  df-divs 28091
This theorem is referenced by:  precsexlem10  28118  precsexlem11  28119
  Copyright terms: Public domain W3C validator