MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem9 Structured version   Visualization version   GIF version

Theorem precsexlem9 28257
Description: Lemma for surreal reciprocal. Show that the product of 𝐴 and a left element is less than one and the product of 𝐴 and a right element is greater than one. (Contributed by Scott Fenton, 14-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
Assertion
Ref Expression
precsexlem9 ((𝜑𝐼 ∈ ω) → (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐)))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐴,𝑏,𝑐,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑟   𝐼,𝑏,𝑐   𝐿,𝑏,𝑟   𝑅,𝑐
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝,𝑏,𝑐,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑏,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑏,𝑐,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐼(𝑥,𝑦,𝑟,𝑝,𝑎,𝑙,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑝,𝑐,𝑥𝑂)

Proof of Theorem precsexlem9
Dummy variables 𝑖 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . . . 6 (𝑖 = ∅ → (𝐿𝑖) = (𝐿‘∅))
21raleqdv 3334 . . . . 5 (𝑖 = ∅ → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ))
3 fveq2 6920 . . . . . 6 (𝑖 = ∅ → (𝑅𝑖) = (𝑅‘∅))
43raleqdv 3334 . . . . 5 (𝑖 = ∅ → (∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)))
52, 4anbi12d 631 . . . 4 (𝑖 = ∅ → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐))))
65imbi2d 340 . . 3 (𝑖 = ∅ → ((𝜑 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)))))
7 fveq2 6920 . . . . . 6 (𝑖 = 𝑗 → (𝐿𝑖) = (𝐿𝑗))
87raleqdv 3334 . . . . 5 (𝑖 = 𝑗 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ))
9 fveq2 6920 . . . . . 6 (𝑖 = 𝑗 → (𝑅𝑖) = (𝑅𝑗))
109raleqdv 3334 . . . . 5 (𝑖 = 𝑗 → (∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐)))
118, 10anbi12d 631 . . . 4 (𝑖 = 𝑗 → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))))
1211imbi2d 340 . . 3 (𝑖 = 𝑗 → ((𝜑 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐)))))
13 fveq2 6920 . . . . . . 7 (𝑖 = suc 𝑗 → (𝐿𝑖) = (𝐿‘suc 𝑗))
1413raleqdv 3334 . . . . . 6 (𝑖 = suc 𝑗 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ))
15 fveq2 6920 . . . . . . 7 (𝑖 = suc 𝑗 → (𝑅𝑖) = (𝑅‘suc 𝑗))
1615raleqdv 3334 . . . . . 6 (𝑖 = suc 𝑗 → (∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐)))
1714, 16anbi12d 631 . . . . 5 (𝑖 = suc 𝑗 → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐))))
18 oveq2 7456 . . . . . . . 8 (𝑏 = 𝑟 → (𝐴 ·s 𝑏) = (𝐴 ·s 𝑟))
1918breq1d 5176 . . . . . . 7 (𝑏 = 𝑟 → ((𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 𝑟) <s 1s ))
2019cbvralvw 3243 . . . . . 6 (∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s )
21 oveq2 7456 . . . . . . . 8 (𝑐 = 𝑠 → (𝐴 ·s 𝑐) = (𝐴 ·s 𝑠))
2221breq2d 5178 . . . . . . 7 (𝑐 = 𝑠 → ( 1s <s (𝐴 ·s 𝑐) ↔ 1s <s (𝐴 ·s 𝑠)))
2322cbvralvw 3243 . . . . . 6 (∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))
2420, 23anbi12i 627 . . . . 5 ((∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))
2517, 24bitrdi 287 . . . 4 (𝑖 = suc 𝑗 → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))))
2625imbi2d 340 . . 3 (𝑖 = suc 𝑗 → ((𝜑 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))))
27 fveq2 6920 . . . . . 6 (𝑖 = 𝐼 → (𝐿𝑖) = (𝐿𝐼))
2827raleqdv 3334 . . . . 5 (𝑖 = 𝐼 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ))
29 fveq2 6920 . . . . . 6 (𝑖 = 𝐼 → (𝑅𝑖) = (𝑅𝐼))
3029raleqdv 3334 . . . . 5 (𝑖 = 𝐼 → (∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐)))
3128, 30anbi12d 631 . . . 4 (𝑖 = 𝐼 → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐))))
3231imbi2d 340 . . 3 (𝑖 = 𝐼 → ((𝜑 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐)))))
33 precsexlem.4 . . . . . . 7 (𝜑𝐴 No )
34 muls01 28156 . . . . . . 7 (𝐴 No → (𝐴 ·s 0s ) = 0s )
3533, 34syl 17 . . . . . 6 (𝜑 → (𝐴 ·s 0s ) = 0s )
36 0slt1s 27892 . . . . . 6 0s <s 1s
3735, 36eqbrtrdi 5205 . . . . 5 (𝜑 → (𝐴 ·s 0s ) <s 1s )
38 precsexlem.1 . . . . . . . 8 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
39 precsexlem.2 . . . . . . . 8 𝐿 = (1st𝐹)
40 precsexlem.3 . . . . . . . 8 𝑅 = (2nd𝐹)
4138, 39, 40precsexlem1 28249 . . . . . . 7 (𝐿‘∅) = { 0s }
4241raleqi 3332 . . . . . 6 (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ { 0s } (𝐴 ·s 𝑏) <s 1s )
43 0sno 27889 . . . . . . . 8 0s No
4443elexi 3511 . . . . . . 7 0s ∈ V
45 oveq2 7456 . . . . . . . 8 (𝑏 = 0s → (𝐴 ·s 𝑏) = (𝐴 ·s 0s ))
4645breq1d 5176 . . . . . . 7 (𝑏 = 0s → ((𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 0s ) <s 1s ))
4744, 46ralsn 4705 . . . . . 6 (∀𝑏 ∈ { 0s } (𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 0s ) <s 1s )
4842, 47bitri 275 . . . . 5 (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 0s ) <s 1s )
4937, 48sylibr 234 . . . 4 (𝜑 → ∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s )
50 ral0 4536 . . . . 5 𝑐 ∈ ∅ 1s <s (𝐴 ·s 𝑐)
5138, 39, 40precsexlem2 28250 . . . . . 6 (𝑅‘∅) = ∅
5251raleqi 3332 . . . . 5 (∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ ∅ 1s <s (𝐴 ·s 𝑐))
5350, 52mpbir 231 . . . 4 𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)
5449, 53jctir 520 . . 3 (𝜑 → (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)))
5538, 39, 40precsexlem4 28252 . . . . . . . . . . . 12 (𝑗 ∈ ω → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
56553ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
5756eleq2d 2830 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) ↔ 𝑟 ∈ ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))))
58 elun 4176 . . . . . . . . . . 11 (𝑟 ∈ ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})) ↔ (𝑟 ∈ (𝐿𝑗) ∨ 𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
59 elun 4176 . . . . . . . . . . . . 13 (𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) ↔ (𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∨ 𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
60 vex 3492 . . . . . . . . . . . . . . 15 𝑟 ∈ V
61 eqeq1 2744 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑟 → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ 𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
62612rexbidv 3228 . . . . . . . . . . . . . . 15 (𝑎 = 𝑟 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
6360, 62elab 3694 . . . . . . . . . . . . . 14 (𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
64 eqeq1 2744 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑟 → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ 𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
65642rexbidv 3228 . . . . . . . . . . . . . . 15 (𝑎 = 𝑟 → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
6660, 65elab 3694 . . . . . . . . . . . . . 14 (𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
6763, 66orbi12i 913 . . . . . . . . . . . . 13 ((𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∨ 𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
6859, 67bitri 275 . . . . . . . . . . . 12 (𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
6968orbi2i 911 . . . . . . . . . . 11 ((𝑟 ∈ (𝐿𝑗) ∨ 𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})) ↔ (𝑟 ∈ (𝐿𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))))
7058, 69bitri 275 . . . . . . . . . 10 (𝑟 ∈ ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})) ↔ (𝑟 ∈ (𝐿𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))))
7157, 70bitrdi 287 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) ↔ (𝑟 ∈ (𝐿𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))))
72 simp3l 1201 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s )
7319rspccv 3632 . . . . . . . . . . 11 (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s → (𝑟 ∈ (𝐿𝑗) → (𝐴 ·s 𝑟) <s 1s ))
7472, 73syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿𝑗) → (𝐴 ·s 𝑟) <s 1s ))
75333ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → 𝐴 No )
7675adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
77 1sno 27890 . . . . . . . . . . . . . . . . 17 1s No
7877a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
79 rightssno 27938 . . . . . . . . . . . . . . . . . . . . 21 ( R ‘𝐴) ⊆ No
8079sseli 4004 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝑥𝑅 No )
8180adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 No )
8275adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝐴 No )
8381, 82subscld 28111 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → (𝑥𝑅 -s 𝐴) ∈ No )
8483adantrr 716 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
85 precsexlem.5 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0s <s 𝐴)
86 precsexlem.6 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
8738, 39, 40, 33, 85, 86precsexlem8 28256 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ω) → ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ))
8887simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ω) → (𝐿𝑗) ⊆ No )
89883adant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝐿𝑗) ⊆ No )
9089sselda 4008 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝐿 ∈ (𝐿𝑗)) → 𝑦𝐿 No )
9190adantrl 715 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
9284, 91mulscld 28179 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) ∈ No )
9378, 92addscld 28031 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
9481adantrr 716 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 No )
9543a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s No )
96853ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → 0s <s 𝐴)
9796adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s 𝐴)
98 breq2 5170 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑂 = 𝑥𝑅 → (𝐴 <s 𝑥𝑂𝐴 <s 𝑥𝑅))
99 rightval 27921 . . . . . . . . . . . . . . . . . . . . 21 ( R ‘𝐴) = {𝑥𝑂 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥𝑂}
10098, 99elrab2 3711 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑅 ∈ ( R ‘𝐴) ↔ (𝑥𝑅 ∈ ( O ‘( bday 𝐴)) ∧ 𝐴 <s 𝑥𝑅))
101100simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝐴 <s 𝑥𝑅)
102101adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑥𝑅)
10395, 82, 81, 97, 102slttrd 27822 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s 𝑥𝑅)
104103sgt0ne0d 27898 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ≠ 0s )
105104adantrr 716 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ≠ 0s )
106 breq2 5170 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝑅))
107 oveq1 7455 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑂 = 𝑥𝑅 → (𝑥𝑂 ·s 𝑦) = (𝑥𝑅 ·s 𝑦))
108107eqeq1d 2742 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑂 = 𝑥𝑅 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝑅 ·s 𝑦) = 1s ))
109108rexbidv 3185 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
110106, 109imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝑅 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )))
111863ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
112111adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
113 elun2 4206 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
114113adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
115110, 112, 114rspcdva 3636 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
116103, 115mpd 15 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
117116adantrr 716 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
11876, 93, 94, 105, 117divsasswd 28246 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝑅) = (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
119 oveq2 7456 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦𝐿 → (𝐴 ·s 𝑏) = (𝐴 ·s 𝑦𝐿))
120119breq1d 5176 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑦𝐿 → ((𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 𝑦𝐿) <s 1s ))
121120rspccva 3634 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s𝑦𝐿 ∈ (𝐿𝑗)) → (𝐴 ·s 𝑦𝐿) <s 1s )
12272, 121sylan 579 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝐿 ∈ (𝐿𝑗)) → (𝐴 ·s 𝑦𝐿) <s 1s )
123122adantrl 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 𝑦𝐿) <s 1s )
12476, 91mulscld 28179 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 𝑦𝐿) ∈ No )
12582, 81posdifsd 28145 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → (𝐴 <s 𝑥𝑅 ↔ 0s <s (𝑥𝑅 -s 𝐴)))
126102, 125mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s (𝑥𝑅 -s 𝐴))
127126adantrr 716 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s (𝑥𝑅 -s 𝐴))
128124, 78, 84, 127sltmul2d 28216 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s 𝑦𝐿) <s 1s ↔ ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s ((𝑥𝑅 -s 𝐴) ·s 1s )))
129123, 128mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s ((𝑥𝑅 -s 𝐴) ·s 1s ))
13084mulsridd 28158 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 1s ) = (𝑥𝑅 -s 𝐴))
131129, 130breqtrd 5192 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s (𝑥𝑅 -s 𝐴))
13284, 124mulscld 28179 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ∈ No )
13376, 132, 94sltaddsub2d 28140 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s 𝑥𝑅 ↔ ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s (𝑥𝑅 -s 𝐴)))
134131, 133mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s 𝑥𝑅)
13576, 78, 92addsdid 28200 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))))
13676mulsridd 28158 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 1s ) = 𝐴)
13776, 84, 91muls12d 28225 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) = ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))
138136, 137oveq12d 7466 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
139135, 138eqtrd 2780 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
14094mulslidd 28187 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s ·s 𝑥𝑅) = 𝑥𝑅)
141134, 139, 1403brtr4d 5198 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) <s ( 1s ·s 𝑥𝑅))
14276, 93mulscld 28179 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) ∈ No )
143103adantrr 716 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝑅)
144142, 78, 94, 143, 117sltdivmul2wd 28243 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝑅) <s 1s ↔ (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) <s ( 1s ·s 𝑥𝑅)))
145141, 144mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝑅) <s 1s )
146118, 145eqbrtrrd 5190 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)) <s 1s )
147 oveq2 7456 . . . . . . . . . . . . . 14 (𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → (𝐴 ·s 𝑟) = (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
148147breq1d 5176 . . . . . . . . . . . . 13 (𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → ((𝐴 ·s 𝑟) <s 1s ↔ (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)) <s 1s ))
149146, 148syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → (𝐴 ·s 𝑟) <s 1s ))
150149rexlimdvva 3219 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → (𝐴 ·s 𝑟) <s 1s ))
15175adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
15277a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
153 leftssno 27937 . . . . . . . . . . . . . . . . . . . 20 ( L ‘𝐴) ⊆ No
154 elrabi 3703 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑥𝐿 ∈ ( L ‘𝐴))
155154adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 ∈ ( L ‘𝐴))
156153, 155sselid 4006 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 No )
15775adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝐴 No )
158156, 157subscld 28111 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑥𝐿 -s 𝐴) ∈ No )
159158adantrr 716 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
16087simprd 495 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ω) → (𝑅𝑗) ⊆ No )
1611603adant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑅𝑗) ⊆ No )
162161sselda 4008 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝑅 ∈ (𝑅𝑗)) → 𝑦𝑅 No )
163162adantrl 715 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
164159, 163mulscld 28179 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) ∈ No )
165152, 164addscld 28031 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
166156adantrr 716 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 No )
167 breq2 5170 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑥𝐿 → ( 0s <s 𝑥 ↔ 0s <s 𝑥𝐿))
168167elrab 3708 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ↔ (𝑥𝐿 ∈ ( L ‘𝐴) ∧ 0s <s 𝑥𝐿))
169168simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 0s <s 𝑥𝐿)
170169adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 0s <s 𝑥𝐿)
171170sgt0ne0d 27898 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 ≠ 0s )
172171adantrr 716 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ≠ 0s )
173 breq2 5170 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝐿))
174 oveq1 7455 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑂 = 𝑥𝐿 → (𝑥𝑂 ·s 𝑦) = (𝑥𝐿 ·s 𝑦))
175174eqeq1d 2742 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑂 = 𝑥𝐿 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝐿 ·s 𝑦) = 1s ))
176175rexbidv 3185 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
177173, 176imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝐿 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )))
178111adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
179 elun1 4205 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
180155, 179syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
181177, 178, 180rspcdva 3636 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
182170, 181mpd 15 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
183182adantrr 716 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
184151, 165, 166, 172, 183divsasswd 28246 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝐿) = (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
185157, 156subscld 28111 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝐴 -s 𝑥𝐿) ∈ No )
186185adantrr 716 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 -s 𝑥𝐿) ∈ No )
187186mulsridd 28158 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 -s 𝑥𝐿) ·s 1s ) = (𝐴 -s 𝑥𝐿))
188 simp3r 1202 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))
189 oveq2 7456 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = 𝑦𝑅 → (𝐴 ·s 𝑐) = (𝐴 ·s 𝑦𝑅))
190189breq2d 5178 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = 𝑦𝑅 → ( 1s <s (𝐴 ·s 𝑐) ↔ 1s <s (𝐴 ·s 𝑦𝑅)))
191190rspccva 3634 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐) ∧ 𝑦𝑅 ∈ (𝑅𝑗)) → 1s <s (𝐴 ·s 𝑦𝑅))
192188, 191sylan 579 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝑅 ∈ (𝑅𝑗)) → 1s <s (𝐴 ·s 𝑦𝑅))
193192adantrl 715 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s <s (𝐴 ·s 𝑦𝑅))
194151, 163mulscld 28179 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s 𝑦𝑅) ∈ No )
195 breq1 5169 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝑂 = 𝑥𝐿 → (𝑥𝑂 <s 𝐴𝑥𝐿 <s 𝐴))
196 leftval 27920 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( L ‘𝐴) = {𝑥𝑂 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥𝑂 <s 𝐴}
197195, 196elrab2 3711 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝐿 ∈ ( L ‘𝐴) ↔ (𝑥𝐿 ∈ ( O ‘( bday 𝐴)) ∧ 𝑥𝐿 <s 𝐴))
198197simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 <s 𝐴)
199155, 198syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 <s 𝐴)
200156, 157posdifsd 28145 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑥𝐿 <s 𝐴 ↔ 0s <s (𝐴 -s 𝑥𝐿)))
201199, 200mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 0s <s (𝐴 -s 𝑥𝐿))
202201adantrr 716 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s (𝐴 -s 𝑥𝐿))
203152, 194, 186, 202sltmul2d 28216 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s <s (𝐴 ·s 𝑦𝑅) ↔ ((𝐴 -s 𝑥𝐿) ·s 1s ) <s ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅))))
204193, 203mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 -s 𝑥𝐿) ·s 1s ) <s ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
205187, 204eqbrtrrd 5190 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 -s 𝑥𝐿) <s ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
206156, 157negsubsdi2d 28128 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ( -us ‘(𝑥𝐿 -s 𝐴)) = (𝐴 -s 𝑥𝐿))
207206adantrr 716 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( -us ‘(𝑥𝐿 -s 𝐴)) = (𝐴 -s 𝑥𝐿))
208159, 194mulnegs1d 28204 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝑅)) = ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
209206oveq1d 7463 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝑅)) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
210209adantrr 716 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝑅)) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
211208, 210eqtr3d 2782 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
212205, 207, 2113brtr4d 5198 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( -us ‘(𝑥𝐿 -s 𝐴)) <s ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
213159, 194mulscld 28179 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ∈ No )
214213, 159sltnegd 28097 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s (𝑥𝐿 -s 𝐴) ↔ ( -us ‘(𝑥𝐿 -s 𝐴)) <s ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))))
215212, 214mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s (𝑥𝐿 -s 𝐴))
216151, 213, 166sltaddsub2d 28140 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) <s 𝑥𝐿 ↔ ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s (𝑥𝐿 -s 𝐴)))
217215, 216mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) <s 𝑥𝐿)
218151, 152, 164addsdid 28200 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) = ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))))
219151mulsridd 28158 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s 1s ) = 𝐴)
220151, 159, 163muls12d 28225 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) = ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))
221219, 220oveq12d 7466 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
222218, 221eqtrd 2780 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
223166mulsridd 28158 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝐿 ·s 1s ) = 𝑥𝐿)
224217, 222, 2233brtr4d 5198 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) <s (𝑥𝐿 ·s 1s ))
225151, 165mulscld 28179 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) ∈ No )
226170adantrr 716 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝐿)
227225, 152, 166, 226, 183sltdivmulwd 28242 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝐿) <s 1s ↔ (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) <s (𝑥𝐿 ·s 1s )))
228224, 227mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝐿) <s 1s )
229184, 228eqbrtrrd 5190 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)) <s 1s )
230 oveq2 7456 . . . . . . . . . . . . . 14 (𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → (𝐴 ·s 𝑟) = (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
231230breq1d 5176 . . . . . . . . . . . . 13 (𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → ((𝐴 ·s 𝑟) <s 1s ↔ (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)) <s 1s ))
232229, 231syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → (𝐴 ·s 𝑟) <s 1s ))
233232rexlimdvva 3219 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → (𝐴 ·s 𝑟) <s 1s ))
234150, 233jaod 858 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ((∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)) → (𝐴 ·s 𝑟) <s 1s ))
23574, 234jaod 858 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ((𝑟 ∈ (𝐿𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))) → (𝐴 ·s 𝑟) <s 1s ))
23671, 235sylbid 240 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) → (𝐴 ·s 𝑟) <s 1s ))
237236ralrimiv 3151 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s )
23838, 39, 40precsexlem5 28253 . . . . . . . . . . . 12 (𝑗 ∈ ω → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
2392383ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
240239eleq2d 2830 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) ↔ 𝑠 ∈ ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))))
241 elun 4176 . . . . . . . . . . 11 (𝑠 ∈ ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})) ↔ (𝑠 ∈ (𝑅𝑗) ∨ 𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
242 elun 4176 . . . . . . . . . . . . 13 (𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) ↔ (𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∨ 𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))
243 vex 3492 . . . . . . . . . . . . . . 15 𝑠 ∈ V
244 eqeq1 2744 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑠 → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ 𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
2452442rexbidv 3228 . . . . . . . . . . . . . . 15 (𝑎 = 𝑠 → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
246243, 245elab 3694 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
247 eqeq1 2744 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑠 → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ 𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
2482472rexbidv 3228 . . . . . . . . . . . . . . 15 (𝑎 = 𝑠 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
249243, 248elab 3694 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
250246, 249orbi12i 913 . . . . . . . . . . . . 13 ((𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∨ 𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) ↔ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
251242, 250bitri 275 . . . . . . . . . . . 12 (𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) ↔ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
252251orbi2i 911 . . . . . . . . . . 11 ((𝑠 ∈ (𝑅𝑗) ∨ 𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})) ↔ (𝑠 ∈ (𝑅𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))))
253241, 252bitri 275 . . . . . . . . . 10 (𝑠 ∈ ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})) ↔ (𝑠 ∈ (𝑅𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))))
254240, 253bitrdi 287 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) ↔ (𝑠 ∈ (𝑅𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))))
25522rspccv 3632 . . . . . . . . . . 11 (∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐) → (𝑠 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑠)))
256188, 255syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑠)))
257122adantrl 715 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 𝑦𝐿) <s 1s )
25875adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
25990adantrl 715 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
260258, 259mulscld 28179 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 𝑦𝐿) ∈ No )
26177a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
262185adantrr 716 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 -s 𝑥𝐿) ∈ No )
263201adantrr 716 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s (𝐴 -s 𝑥𝐿))
264260, 261, 262, 263sltmul2d 28216 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s 𝑦𝐿) <s 1s ↔ ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)) <s ((𝐴 -s 𝑥𝐿) ·s 1s )))
265257, 264mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)) <s ((𝐴 -s 𝑥𝐿) ·s 1s ))
266262mulsridd 28158 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 -s 𝑥𝐿) ·s 1s ) = (𝐴 -s 𝑥𝐿))
267265, 266breqtrd 5192 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)) <s (𝐴 -s 𝑥𝐿))
268158adantrr 716 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
269268, 260mulnegs1d 28204 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝐿)) = ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
270206oveq1d 7463 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝐿)) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)))
271270adantrr 716 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝐿)) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)))
272269, 271eqtr3d 2782 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)))
273206adantrr 716 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( -us ‘(𝑥𝐿 -s 𝐴)) = (𝐴 -s 𝑥𝐿))
274267, 272, 2733brtr4d 5198 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s ( -us ‘(𝑥𝐿 -s 𝐴)))
275268, 260mulscld 28179 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ∈ No )
276268, 275sltnegd 28097 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ↔ ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s ( -us ‘(𝑥𝐿 -s 𝐴))))
277274, 276mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))
278156adantrr 716 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 No )
279278, 258, 275sltsubadd2d 28138 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ↔ 𝑥𝐿 <s (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))))
280277, 279mpbid 232 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 <s (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
281278mulslidd 28187 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s ·s 𝑥𝐿) = 𝑥𝐿)
282268, 259mulscld 28179 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) ∈ No )
283258, 261, 282addsdid 28200 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))))
284258mulsridd 28158 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 1s ) = 𝐴)
285258, 268, 259muls12d 28225 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) = ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))
286284, 285oveq12d 7466 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
287283, 286eqtrd 2780 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
288280, 281, 2873brtr4d 5198 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s ·s 𝑥𝐿) <s (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))))
289261, 282addscld 28031 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
290258, 289mulscld 28179 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) ∈ No )
291170adantrr 716 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝐿)
292182adantrr 716 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
293261, 290, 278, 291, 292sltmuldivwd 28244 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( 1s ·s 𝑥𝐿) <s (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) ↔ 1s <s ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝐿)))
294288, 293mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s <s ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝐿))
295171adantrr 716 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ≠ 0s )
296258, 289, 278, 295, 292divsasswd 28246 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝐿) = (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
297294, 296breqtrd 5192 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s <s (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
298 oveq2 7456 . . . . . . . . . . . . . 14 (𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → (𝐴 ·s 𝑠) = (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
299298breq2d 5178 . . . . . . . . . . . . 13 (𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → ( 1s <s (𝐴 ·s 𝑠) ↔ 1s <s (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))))
300297, 299syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 1s <s (𝐴 ·s 𝑠)))
301300rexlimdvva 3219 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 1s <s (𝐴 ·s 𝑠)))
30283adantrr 716 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
303302mulsridd 28158 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 1s ) = (𝑥𝑅 -s 𝐴))
304192adantrl 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s <s (𝐴 ·s 𝑦𝑅))
30577a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
30675adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
307162adantrl 715 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
308306, 307mulscld 28179 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s 𝑦𝑅) ∈ No )
309126adantrr 716 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s (𝑥𝑅 -s 𝐴))
310305, 308, 302, 309sltmul2d 28216 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s <s (𝐴 ·s 𝑦𝑅) ↔ ((𝑥𝑅 -s 𝐴) ·s 1s ) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
311304, 310mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 1s ) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))
312303, 311eqbrtrrd 5190 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝑅 -s 𝐴) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))
31381adantrr 716 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 No )
314302, 308mulscld 28179 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ∈ No )
315313, 306, 314sltsubadd2d 28138 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ↔ 𝑥𝑅 <s (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))))
316312, 315mpbid 232 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 <s (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
317313mulslidd 28187 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s ·s 𝑥𝑅) = 𝑥𝑅)
318302, 307mulscld 28179 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) ∈ No )
319306, 305, 318addsdid 28200 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) = ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))))
320306mulsridd 28158 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s 1s ) = 𝐴)
321306, 302, 307muls12d 28225 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) = ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))
322320, 321oveq12d 7466 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
323319, 322eqtrd 2780 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
324316, 317, 3233brtr4d 5198 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s ·s 𝑥𝑅) <s (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))))
325305, 318addscld 28031 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
326306, 325mulscld 28179 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) ∈ No )
327103adantrr 716 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝑅)
328116adantrr 716 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
329305, 326, 313, 327, 328sltmuldivwd 28244 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( 1s ·s 𝑥𝑅) <s (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) ↔ 1s <s ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝑅)))
330324, 329mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s <s ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝑅))
331104adantrr 716 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ≠ 0s )
332306, 325, 313, 331, 328divsasswd 28246 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝑅) = (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
333330, 332breqtrd 5192 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s <s (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
334 oveq2 7456 . . . . . . . . . . . . . 14 (𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → (𝐴 ·s 𝑠) = (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
335334breq2d 5178 . . . . . . . . . . . . 13 (𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → ( 1s <s (𝐴 ·s 𝑠) ↔ 1s <s (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))))
336333, 335syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 1s <s (𝐴 ·s 𝑠)))
337336rexlimdvva 3219 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 1s <s (𝐴 ·s 𝑠)))
338301, 337jaod 858 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ((∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)) → 1s <s (𝐴 ·s 𝑠)))
339256, 338jaod 858 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ((𝑠 ∈ (𝑅𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))) → 1s <s (𝐴 ·s 𝑠)))
340254, 339sylbid 240 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) → 1s <s (𝐴 ·s 𝑠)))
341340ralrimiv 3151 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))
342237, 341jca 511 . . . . . 6 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))
3433423exp 1119 . . . . 5 (𝜑 → (𝑗 ∈ ω → ((∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐)) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))))
344343com12 32 . . . 4 (𝑗 ∈ ω → (𝜑 → ((∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐)) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))))
345344a2d 29 . . 3 (𝑗 ∈ ω → ((𝜑 → (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝜑 → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))))
3466, 12, 26, 32, 54, 345finds 7936 . 2 (𝐼 ∈ ω → (𝜑 → (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐))))
347346impcom 407 1 ((𝜑𝐼 ∈ ω) → (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  csb 3921  cun 3974  wss 3976  c0 4352  {csn 4648  cop 4654   class class class wbr 5166  cmpt 5249  ccom 5704  suc csuc 6397  cfv 6573  (class class class)co 7448  ωcom 7903  1st c1st 8028  2nd c2nd 8029  reccrdg 8465   No csur 27702   <s cslt 27703   bday cbday 27704   0s c0s 27885   1s c1s 27886   O cold 27900   L cleft 27902   R cright 27903   +s cadds 28010   -us cnegs 28069   -s csubs 28070   ·s cmuls 28150   /su cdivs 28231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151  df-divs 28232
This theorem is referenced by:  precsexlem10  28258  precsexlem11  28259
  Copyright terms: Public domain W3C validator