MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem9 Structured version   Visualization version   GIF version

Theorem precsexlem9 28158
Description: Lemma for surreal reciprocal. Show that the product of 𝐴 and a left element is less than one and the product of 𝐴 and a right element is greater than one. (Contributed by Scott Fenton, 14-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
Assertion
Ref Expression
precsexlem9 ((𝜑𝐼 ∈ ω) → (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐)))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐴,𝑏,𝑐,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑟   𝐼,𝑏,𝑐   𝐿,𝑏,𝑟   𝑅,𝑐
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝,𝑏,𝑐,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑏,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑏,𝑐,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐼(𝑥,𝑦,𝑟,𝑝,𝑎,𝑙,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑝,𝑐,𝑥𝑂)

Proof of Theorem precsexlem9
Dummy variables 𝑖 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . . . 6 (𝑖 = ∅ → (𝐿𝑖) = (𝐿‘∅))
21raleqdv 3296 . . . . 5 (𝑖 = ∅ → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ))
3 fveq2 6840 . . . . . 6 (𝑖 = ∅ → (𝑅𝑖) = (𝑅‘∅))
43raleqdv 3296 . . . . 5 (𝑖 = ∅ → (∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)))
52, 4anbi12d 632 . . . 4 (𝑖 = ∅ → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐))))
65imbi2d 340 . . 3 (𝑖 = ∅ → ((𝜑 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)))))
7 fveq2 6840 . . . . . 6 (𝑖 = 𝑗 → (𝐿𝑖) = (𝐿𝑗))
87raleqdv 3296 . . . . 5 (𝑖 = 𝑗 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ))
9 fveq2 6840 . . . . . 6 (𝑖 = 𝑗 → (𝑅𝑖) = (𝑅𝑗))
109raleqdv 3296 . . . . 5 (𝑖 = 𝑗 → (∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐)))
118, 10anbi12d 632 . . . 4 (𝑖 = 𝑗 → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))))
1211imbi2d 340 . . 3 (𝑖 = 𝑗 → ((𝜑 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐)))))
13 fveq2 6840 . . . . . . 7 (𝑖 = suc 𝑗 → (𝐿𝑖) = (𝐿‘suc 𝑗))
1413raleqdv 3296 . . . . . 6 (𝑖 = suc 𝑗 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ))
15 fveq2 6840 . . . . . . 7 (𝑖 = suc 𝑗 → (𝑅𝑖) = (𝑅‘suc 𝑗))
1615raleqdv 3296 . . . . . 6 (𝑖 = suc 𝑗 → (∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐)))
1714, 16anbi12d 632 . . . . 5 (𝑖 = suc 𝑗 → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐))))
18 oveq2 7377 . . . . . . . 8 (𝑏 = 𝑟 → (𝐴 ·s 𝑏) = (𝐴 ·s 𝑟))
1918breq1d 5112 . . . . . . 7 (𝑏 = 𝑟 → ((𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 𝑟) <s 1s ))
2019cbvralvw 3213 . . . . . 6 (∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s )
21 oveq2 7377 . . . . . . . 8 (𝑐 = 𝑠 → (𝐴 ·s 𝑐) = (𝐴 ·s 𝑠))
2221breq2d 5114 . . . . . . 7 (𝑐 = 𝑠 → ( 1s <s (𝐴 ·s 𝑐) ↔ 1s <s (𝐴 ·s 𝑠)))
2322cbvralvw 3213 . . . . . 6 (∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))
2420, 23anbi12i 628 . . . . 5 ((∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))
2517, 24bitrdi 287 . . . 4 (𝑖 = suc 𝑗 → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))))
2625imbi2d 340 . . 3 (𝑖 = suc 𝑗 → ((𝜑 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))))
27 fveq2 6840 . . . . . 6 (𝑖 = 𝐼 → (𝐿𝑖) = (𝐿𝐼))
2827raleqdv 3296 . . . . 5 (𝑖 = 𝐼 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ))
29 fveq2 6840 . . . . . 6 (𝑖 = 𝐼 → (𝑅𝑖) = (𝑅𝐼))
3029raleqdv 3296 . . . . 5 (𝑖 = 𝐼 → (∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐)))
3128, 30anbi12d 632 . . . 4 (𝑖 = 𝐼 → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐))))
3231imbi2d 340 . . 3 (𝑖 = 𝐼 → ((𝜑 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐)))))
33 precsexlem.4 . . . . . . 7 (𝜑𝐴 No )
34 muls01 28056 . . . . . . 7 (𝐴 No → (𝐴 ·s 0s ) = 0s )
3533, 34syl 17 . . . . . 6 (𝜑 → (𝐴 ·s 0s ) = 0s )
36 0slt1s 27779 . . . . . 6 0s <s 1s
3735, 36eqbrtrdi 5141 . . . . 5 (𝜑 → (𝐴 ·s 0s ) <s 1s )
38 precsexlem.1 . . . . . . . 8 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
39 precsexlem.2 . . . . . . . 8 𝐿 = (1st𝐹)
40 precsexlem.3 . . . . . . . 8 𝑅 = (2nd𝐹)
4138, 39, 40precsexlem1 28150 . . . . . . 7 (𝐿‘∅) = { 0s }
4241raleqi 3294 . . . . . 6 (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ { 0s } (𝐴 ·s 𝑏) <s 1s )
43 0sno 27776 . . . . . . . 8 0s No
4443elexi 3467 . . . . . . 7 0s ∈ V
45 oveq2 7377 . . . . . . . 8 (𝑏 = 0s → (𝐴 ·s 𝑏) = (𝐴 ·s 0s ))
4645breq1d 5112 . . . . . . 7 (𝑏 = 0s → ((𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 0s ) <s 1s ))
4744, 46ralsn 4641 . . . . . 6 (∀𝑏 ∈ { 0s } (𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 0s ) <s 1s )
4842, 47bitri 275 . . . . 5 (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 0s ) <s 1s )
4937, 48sylibr 234 . . . 4 (𝜑 → ∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s )
50 ral0 4472 . . . . 5 𝑐 ∈ ∅ 1s <s (𝐴 ·s 𝑐)
5138, 39, 40precsexlem2 28151 . . . . . 6 (𝑅‘∅) = ∅
5251raleqi 3294 . . . . 5 (∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ ∅ 1s <s (𝐴 ·s 𝑐))
5350, 52mpbir 231 . . . 4 𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)
5449, 53jctir 520 . . 3 (𝜑 → (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)))
5538, 39, 40precsexlem4 28153 . . . . . . . . . . . 12 (𝑗 ∈ ω → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
56553ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
5756eleq2d 2814 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) ↔ 𝑟 ∈ ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))))
58 elun 4112 . . . . . . . . . . 11 (𝑟 ∈ ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})) ↔ (𝑟 ∈ (𝐿𝑗) ∨ 𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
59 elun 4112 . . . . . . . . . . . . 13 (𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) ↔ (𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∨ 𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
60 vex 3448 . . . . . . . . . . . . . . 15 𝑟 ∈ V
61 eqeq1 2733 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑟 → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ 𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
62612rexbidv 3200 . . . . . . . . . . . . . . 15 (𝑎 = 𝑟 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
6360, 62elab 3643 . . . . . . . . . . . . . 14 (𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
64 eqeq1 2733 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑟 → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ 𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
65642rexbidv 3200 . . . . . . . . . . . . . . 15 (𝑎 = 𝑟 → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
6660, 65elab 3643 . . . . . . . . . . . . . 14 (𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
6763, 66orbi12i 914 . . . . . . . . . . . . 13 ((𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∨ 𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
6859, 67bitri 275 . . . . . . . . . . . 12 (𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
6968orbi2i 912 . . . . . . . . . . 11 ((𝑟 ∈ (𝐿𝑗) ∨ 𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})) ↔ (𝑟 ∈ (𝐿𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))))
7058, 69bitri 275 . . . . . . . . . 10 (𝑟 ∈ ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})) ↔ (𝑟 ∈ (𝐿𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))))
7157, 70bitrdi 287 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) ↔ (𝑟 ∈ (𝐿𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))))
72 simp3l 1202 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s )
7319rspccv 3582 . . . . . . . . . . 11 (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s → (𝑟 ∈ (𝐿𝑗) → (𝐴 ·s 𝑟) <s 1s ))
7472, 73syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿𝑗) → (𝐴 ·s 𝑟) <s 1s ))
75333ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → 𝐴 No )
7675adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
77 1sno 27777 . . . . . . . . . . . . . . . . 17 1s No
7877a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
79 rightssno 27832 . . . . . . . . . . . . . . . . . . . . 21 ( R ‘𝐴) ⊆ No
8079sseli 3939 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝑥𝑅 No )
8180adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 No )
8275adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝐴 No )
8381, 82subscld 28008 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → (𝑥𝑅 -s 𝐴) ∈ No )
8483adantrr 717 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
85 precsexlem.5 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0s <s 𝐴)
86 precsexlem.6 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
8738, 39, 40, 33, 85, 86precsexlem8 28157 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ω) → ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ))
8887simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ω) → (𝐿𝑗) ⊆ No )
89883adant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝐿𝑗) ⊆ No )
9089sselda 3943 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝐿 ∈ (𝐿𝑗)) → 𝑦𝐿 No )
9190adantrl 716 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
9284, 91mulscld 28079 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) ∈ No )
9378, 92addscld 27928 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
9481adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 No )
9543a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s No )
96853ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → 0s <s 𝐴)
9796adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s 𝐴)
98 rightgt 27814 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝐴 <s 𝑥𝑅)
9998adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑥𝑅)
10095, 82, 81, 97, 99slttrd 27705 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s 𝑥𝑅)
101100sgt0ne0d 27786 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ≠ 0s )
102101adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ≠ 0s )
103 breq2 5106 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝑅))
104 oveq1 7376 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑂 = 𝑥𝑅 → (𝑥𝑂 ·s 𝑦) = (𝑥𝑅 ·s 𝑦))
105104eqeq1d 2731 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑂 = 𝑥𝑅 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝑅 ·s 𝑦) = 1s ))
106105rexbidv 3157 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
107103, 106imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝑅 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )))
108863ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
109108adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
110 elun2 4142 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
111110adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
112107, 109, 111rspcdva 3586 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
113100, 112mpd 15 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
114113adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
11576, 93, 94, 102, 114divsasswd 28147 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝑅) = (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
116 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦𝐿 → (𝐴 ·s 𝑏) = (𝐴 ·s 𝑦𝐿))
117116breq1d 5112 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑦𝐿 → ((𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 𝑦𝐿) <s 1s ))
118117rspccva 3584 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s𝑦𝐿 ∈ (𝐿𝑗)) → (𝐴 ·s 𝑦𝐿) <s 1s )
11972, 118sylan 580 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝐿 ∈ (𝐿𝑗)) → (𝐴 ·s 𝑦𝐿) <s 1s )
120119adantrl 716 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 𝑦𝐿) <s 1s )
12176, 91mulscld 28079 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 𝑦𝐿) ∈ No )
12282, 81posdifsd 28042 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → (𝐴 <s 𝑥𝑅 ↔ 0s <s (𝑥𝑅 -s 𝐴)))
12399, 122mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s (𝑥𝑅 -s 𝐴))
124123adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s (𝑥𝑅 -s 𝐴))
125121, 78, 84, 124sltmul2d 28116 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s 𝑦𝐿) <s 1s ↔ ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s ((𝑥𝑅 -s 𝐴) ·s 1s )))
126120, 125mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s ((𝑥𝑅 -s 𝐴) ·s 1s ))
12784mulsridd 28058 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 1s ) = (𝑥𝑅 -s 𝐴))
128126, 127breqtrd 5128 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s (𝑥𝑅 -s 𝐴))
12984, 121mulscld 28079 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ∈ No )
13076, 129, 94sltaddsub2d 28037 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s 𝑥𝑅 ↔ ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s (𝑥𝑅 -s 𝐴)))
131128, 130mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s 𝑥𝑅)
13276, 78, 92addsdid 28100 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))))
13376mulsridd 28058 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 1s ) = 𝐴)
13476, 84, 91muls12d 28125 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) = ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))
135133, 134oveq12d 7387 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
136132, 135eqtrd 2764 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
13794mulslidd 28087 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s ·s 𝑥𝑅) = 𝑥𝑅)
138131, 136, 1373brtr4d 5134 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) <s ( 1s ·s 𝑥𝑅))
13976, 93mulscld 28079 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) ∈ No )
140100adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝑅)
141139, 78, 94, 140, 114sltdivmul2wd 28144 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝑅) <s 1s ↔ (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) <s ( 1s ·s 𝑥𝑅)))
142138, 141mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝑅) <s 1s )
143115, 142eqbrtrrd 5126 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)) <s 1s )
144 oveq2 7377 . . . . . . . . . . . . . 14 (𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → (𝐴 ·s 𝑟) = (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
145144breq1d 5112 . . . . . . . . . . . . 13 (𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → ((𝐴 ·s 𝑟) <s 1s ↔ (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)) <s 1s ))
146143, 145syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → (𝐴 ·s 𝑟) <s 1s ))
147146rexlimdvva 3192 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → (𝐴 ·s 𝑟) <s 1s ))
14875adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
14977a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
150 leftssno 27831 . . . . . . . . . . . . . . . . . . . 20 ( L ‘𝐴) ⊆ No
151 elrabi 3651 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑥𝐿 ∈ ( L ‘𝐴))
152151adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 ∈ ( L ‘𝐴))
153150, 152sselid 3941 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 No )
15475adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝐴 No )
155153, 154subscld 28008 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑥𝐿 -s 𝐴) ∈ No )
156155adantrr 717 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
15787simprd 495 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ω) → (𝑅𝑗) ⊆ No )
1581573adant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑅𝑗) ⊆ No )
159158sselda 3943 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝑅 ∈ (𝑅𝑗)) → 𝑦𝑅 No )
160159adantrl 716 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
161156, 160mulscld 28079 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) ∈ No )
162149, 161addscld 27928 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
163153adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 No )
164 breq2 5106 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑥𝐿 → ( 0s <s 𝑥 ↔ 0s <s 𝑥𝐿))
165164elrab 3656 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ↔ (𝑥𝐿 ∈ ( L ‘𝐴) ∧ 0s <s 𝑥𝐿))
166165simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 0s <s 𝑥𝐿)
167166adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 0s <s 𝑥𝐿)
168167sgt0ne0d 27786 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 ≠ 0s )
169168adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ≠ 0s )
170 breq2 5106 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝐿))
171 oveq1 7376 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑂 = 𝑥𝐿 → (𝑥𝑂 ·s 𝑦) = (𝑥𝐿 ·s 𝑦))
172171eqeq1d 2731 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑂 = 𝑥𝐿 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝐿 ·s 𝑦) = 1s ))
173172rexbidv 3157 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
174170, 173imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝐿 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )))
175108adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
176 elun1 4141 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
177152, 176syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
178174, 175, 177rspcdva 3586 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
179167, 178mpd 15 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
180179adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
181148, 162, 163, 169, 180divsasswd 28147 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝐿) = (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
182154, 153subscld 28008 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝐴 -s 𝑥𝐿) ∈ No )
183182adantrr 717 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 -s 𝑥𝐿) ∈ No )
184183mulsridd 28058 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 -s 𝑥𝐿) ·s 1s ) = (𝐴 -s 𝑥𝐿))
185 simp3r 1203 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))
186 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = 𝑦𝑅 → (𝐴 ·s 𝑐) = (𝐴 ·s 𝑦𝑅))
187186breq2d 5114 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = 𝑦𝑅 → ( 1s <s (𝐴 ·s 𝑐) ↔ 1s <s (𝐴 ·s 𝑦𝑅)))
188187rspccva 3584 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐) ∧ 𝑦𝑅 ∈ (𝑅𝑗)) → 1s <s (𝐴 ·s 𝑦𝑅))
189185, 188sylan 580 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝑅 ∈ (𝑅𝑗)) → 1s <s (𝐴 ·s 𝑦𝑅))
190189adantrl 716 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s <s (𝐴 ·s 𝑦𝑅))
191148, 160mulscld 28079 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s 𝑦𝑅) ∈ No )
192 leftlt 27813 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 <s 𝐴)
193152, 192syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 <s 𝐴)
194153, 154posdifsd 28042 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑥𝐿 <s 𝐴 ↔ 0s <s (𝐴 -s 𝑥𝐿)))
195193, 194mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 0s <s (𝐴 -s 𝑥𝐿))
196195adantrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s (𝐴 -s 𝑥𝐿))
197149, 191, 183, 196sltmul2d 28116 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s <s (𝐴 ·s 𝑦𝑅) ↔ ((𝐴 -s 𝑥𝐿) ·s 1s ) <s ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅))))
198190, 197mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 -s 𝑥𝐿) ·s 1s ) <s ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
199184, 198eqbrtrrd 5126 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 -s 𝑥𝐿) <s ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
200153, 154negsubsdi2d 28025 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ( -us ‘(𝑥𝐿 -s 𝐴)) = (𝐴 -s 𝑥𝐿))
201200adantrr 717 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( -us ‘(𝑥𝐿 -s 𝐴)) = (𝐴 -s 𝑥𝐿))
202156, 191mulnegs1d 28104 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝑅)) = ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
203200oveq1d 7384 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝑅)) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
204203adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝑅)) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
205202, 204eqtr3d 2766 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
206199, 201, 2053brtr4d 5134 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( -us ‘(𝑥𝐿 -s 𝐴)) <s ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
207156, 191mulscld 28079 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ∈ No )
208207, 156sltnegd 27994 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s (𝑥𝐿 -s 𝐴) ↔ ( -us ‘(𝑥𝐿 -s 𝐴)) <s ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))))
209206, 208mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s (𝑥𝐿 -s 𝐴))
210148, 207, 163sltaddsub2d 28037 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) <s 𝑥𝐿 ↔ ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s (𝑥𝐿 -s 𝐴)))
211209, 210mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) <s 𝑥𝐿)
212148, 149, 161addsdid 28100 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) = ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))))
213148mulsridd 28058 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s 1s ) = 𝐴)
214148, 156, 160muls12d 28125 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) = ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))
215213, 214oveq12d 7387 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
216212, 215eqtrd 2764 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
217163mulsridd 28058 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝐿 ·s 1s ) = 𝑥𝐿)
218211, 216, 2173brtr4d 5134 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) <s (𝑥𝐿 ·s 1s ))
219148, 162mulscld 28079 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) ∈ No )
220167adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝐿)
221219, 149, 163, 220, 180sltdivmulwd 28143 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝐿) <s 1s ↔ (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) <s (𝑥𝐿 ·s 1s )))
222218, 221mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝐿) <s 1s )
223181, 222eqbrtrrd 5126 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)) <s 1s )
224 oveq2 7377 . . . . . . . . . . . . . 14 (𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → (𝐴 ·s 𝑟) = (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
225224breq1d 5112 . . . . . . . . . . . . 13 (𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → ((𝐴 ·s 𝑟) <s 1s ↔ (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)) <s 1s ))
226223, 225syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → (𝐴 ·s 𝑟) <s 1s ))
227226rexlimdvva 3192 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → (𝐴 ·s 𝑟) <s 1s ))
228147, 227jaod 859 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ((∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)) → (𝐴 ·s 𝑟) <s 1s ))
22974, 228jaod 859 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ((𝑟 ∈ (𝐿𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))) → (𝐴 ·s 𝑟) <s 1s ))
23071, 229sylbid 240 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) → (𝐴 ·s 𝑟) <s 1s ))
231230ralrimiv 3124 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s )
23238, 39, 40precsexlem5 28154 . . . . . . . . . . . 12 (𝑗 ∈ ω → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
2332323ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
234233eleq2d 2814 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) ↔ 𝑠 ∈ ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))))
235 elun 4112 . . . . . . . . . . 11 (𝑠 ∈ ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})) ↔ (𝑠 ∈ (𝑅𝑗) ∨ 𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
236 elun 4112 . . . . . . . . . . . . 13 (𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) ↔ (𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∨ 𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))
237 vex 3448 . . . . . . . . . . . . . . 15 𝑠 ∈ V
238 eqeq1 2733 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑠 → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ 𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
2392382rexbidv 3200 . . . . . . . . . . . . . . 15 (𝑎 = 𝑠 → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
240237, 239elab 3643 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
241 eqeq1 2733 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑠 → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ 𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
2422412rexbidv 3200 . . . . . . . . . . . . . . 15 (𝑎 = 𝑠 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
243237, 242elab 3643 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
244240, 243orbi12i 914 . . . . . . . . . . . . 13 ((𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∨ 𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) ↔ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
245236, 244bitri 275 . . . . . . . . . . . 12 (𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) ↔ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
246245orbi2i 912 . . . . . . . . . . 11 ((𝑠 ∈ (𝑅𝑗) ∨ 𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})) ↔ (𝑠 ∈ (𝑅𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))))
247235, 246bitri 275 . . . . . . . . . 10 (𝑠 ∈ ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})) ↔ (𝑠 ∈ (𝑅𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))))
248234, 247bitrdi 287 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) ↔ (𝑠 ∈ (𝑅𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))))
24922rspccv 3582 . . . . . . . . . . 11 (∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐) → (𝑠 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑠)))
250185, 249syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑠)))
251119adantrl 716 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 𝑦𝐿) <s 1s )
25275adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
25390adantrl 716 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
254252, 253mulscld 28079 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 𝑦𝐿) ∈ No )
25577a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
256182adantrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 -s 𝑥𝐿) ∈ No )
257195adantrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s (𝐴 -s 𝑥𝐿))
258254, 255, 256, 257sltmul2d 28116 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s 𝑦𝐿) <s 1s ↔ ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)) <s ((𝐴 -s 𝑥𝐿) ·s 1s )))
259251, 258mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)) <s ((𝐴 -s 𝑥𝐿) ·s 1s ))
260256mulsridd 28058 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 -s 𝑥𝐿) ·s 1s ) = (𝐴 -s 𝑥𝐿))
261259, 260breqtrd 5128 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)) <s (𝐴 -s 𝑥𝐿))
262155adantrr 717 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
263262, 254mulnegs1d 28104 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝐿)) = ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
264200oveq1d 7384 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝐿)) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)))
265264adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝐿)) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)))
266263, 265eqtr3d 2766 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)))
267200adantrr 717 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( -us ‘(𝑥𝐿 -s 𝐴)) = (𝐴 -s 𝑥𝐿))
268261, 266, 2673brtr4d 5134 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s ( -us ‘(𝑥𝐿 -s 𝐴)))
269262, 254mulscld 28079 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ∈ No )
270262, 269sltnegd 27994 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ↔ ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s ( -us ‘(𝑥𝐿 -s 𝐴))))
271268, 270mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))
272153adantrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 No )
273272, 252, 269sltsubadd2d 28035 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ↔ 𝑥𝐿 <s (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))))
274271, 273mpbid 232 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 <s (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
275272mulslidd 28087 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s ·s 𝑥𝐿) = 𝑥𝐿)
276262, 253mulscld 28079 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) ∈ No )
277252, 255, 276addsdid 28100 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))))
278252mulsridd 28058 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 1s ) = 𝐴)
279252, 262, 253muls12d 28125 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) = ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))
280278, 279oveq12d 7387 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
281277, 280eqtrd 2764 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
282274, 275, 2813brtr4d 5134 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s ·s 𝑥𝐿) <s (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))))
283255, 276addscld 27928 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
284252, 283mulscld 28079 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) ∈ No )
285167adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝐿)
286179adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
287255, 284, 272, 285, 286sltmuldivwd 28145 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( 1s ·s 𝑥𝐿) <s (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) ↔ 1s <s ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝐿)))
288282, 287mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s <s ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝐿))
289168adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ≠ 0s )
290252, 283, 272, 289, 286divsasswd 28147 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝐿) = (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
291288, 290breqtrd 5128 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s <s (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
292 oveq2 7377 . . . . . . . . . . . . . 14 (𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → (𝐴 ·s 𝑠) = (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
293292breq2d 5114 . . . . . . . . . . . . 13 (𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → ( 1s <s (𝐴 ·s 𝑠) ↔ 1s <s (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))))
294291, 293syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 1s <s (𝐴 ·s 𝑠)))
295294rexlimdvva 3192 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 1s <s (𝐴 ·s 𝑠)))
29683adantrr 717 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
297296mulsridd 28058 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 1s ) = (𝑥𝑅 -s 𝐴))
298189adantrl 716 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s <s (𝐴 ·s 𝑦𝑅))
29977a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
30075adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
301159adantrl 716 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
302300, 301mulscld 28079 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s 𝑦𝑅) ∈ No )
303123adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s (𝑥𝑅 -s 𝐴))
304299, 302, 296, 303sltmul2d 28116 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s <s (𝐴 ·s 𝑦𝑅) ↔ ((𝑥𝑅 -s 𝐴) ·s 1s ) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
305298, 304mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 1s ) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))
306297, 305eqbrtrrd 5126 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝑅 -s 𝐴) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))
30781adantrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 No )
308296, 302mulscld 28079 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ∈ No )
309307, 300, 308sltsubadd2d 28035 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ↔ 𝑥𝑅 <s (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))))
310306, 309mpbid 232 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 <s (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
311307mulslidd 28087 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s ·s 𝑥𝑅) = 𝑥𝑅)
312296, 301mulscld 28079 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) ∈ No )
313300, 299, 312addsdid 28100 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) = ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))))
314300mulsridd 28058 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s 1s ) = 𝐴)
315300, 296, 301muls12d 28125 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) = ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))
316314, 315oveq12d 7387 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
317313, 316eqtrd 2764 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
318310, 311, 3173brtr4d 5134 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s ·s 𝑥𝑅) <s (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))))
319299, 312addscld 27928 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
320300, 319mulscld 28079 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) ∈ No )
321100adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝑅)
322113adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
323299, 320, 307, 321, 322sltmuldivwd 28145 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( 1s ·s 𝑥𝑅) <s (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) ↔ 1s <s ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝑅)))
324318, 323mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s <s ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝑅))
325101adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ≠ 0s )
326300, 319, 307, 325, 322divsasswd 28147 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝑅) = (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
327324, 326breqtrd 5128 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s <s (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
328 oveq2 7377 . . . . . . . . . . . . . 14 (𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → (𝐴 ·s 𝑠) = (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
329328breq2d 5114 . . . . . . . . . . . . 13 (𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → ( 1s <s (𝐴 ·s 𝑠) ↔ 1s <s (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))))
330327, 329syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 1s <s (𝐴 ·s 𝑠)))
331330rexlimdvva 3192 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 1s <s (𝐴 ·s 𝑠)))
332295, 331jaod 859 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ((∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)) → 1s <s (𝐴 ·s 𝑠)))
333250, 332jaod 859 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ((𝑠 ∈ (𝑅𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))) → 1s <s (𝐴 ·s 𝑠)))
334248, 333sylbid 240 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) → 1s <s (𝐴 ·s 𝑠)))
335334ralrimiv 3124 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))
336231, 335jca 511 . . . . . 6 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))
3373363exp 1119 . . . . 5 (𝜑 → (𝑗 ∈ ω → ((∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐)) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))))
338337com12 32 . . . 4 (𝑗 ∈ ω → (𝜑 → ((∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐)) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))))
339338a2d 29 . . 3 (𝑗 ∈ ω → ((𝜑 → (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝜑 → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))))
3406, 12, 26, 32, 54, 339finds 7852 . 2 (𝐼 ∈ ω → (𝜑 → (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐))))
341340impcom 407 1 ((𝜑𝐼 ∈ ω) → (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  csb 3859  cun 3909  wss 3911  c0 4292  {csn 4585  cop 4591   class class class wbr 5102  cmpt 5183  ccom 5635  suc csuc 6322  cfv 6499  (class class class)co 7369  ωcom 7822  1st c1st 7945  2nd c2nd 7946  reccrdg 8354   No csur 27585   <s cslt 27586   0s c0s 27772   1s c1s 27773   L cleft 27791   R cright 27792   +s cadds 27907   -us cnegs 27966   -s csubs 27967   ·s cmuls 28050   /su cdivs 28131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-nadd 8607  df-no 27588  df-slt 27589  df-bday 27590  df-sle 27691  df-sslt 27728  df-scut 27730  df-0s 27774  df-1s 27775  df-made 27793  df-old 27794  df-left 27796  df-right 27797  df-norec 27886  df-norec2 27897  df-adds 27908  df-negs 27968  df-subs 27969  df-muls 28051  df-divs 28132
This theorem is referenced by:  precsexlem10  28159  precsexlem11  28160
  Copyright terms: Public domain W3C validator