MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem9 Structured version   Visualization version   GIF version

Theorem precsexlem9 27901
Description: Lemma for surreal reciprocal. Show that the product of 𝐴 and a left element is less than one and the product of 𝐴 and a right element is greater than one. (Contributed by Scott Fenton, 14-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
Assertion
Ref Expression
precsexlem9 ((𝜑𝐼 ∈ ω) → (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐)))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐴,𝑏,𝑐,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑟   𝐼,𝑏,𝑐   𝐿,𝑏,𝑟   𝑅,𝑐
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝,𝑏,𝑐,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑏,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑏,𝑐,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐼(𝑥,𝑦,𝑟,𝑝,𝑎,𝑙,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑝,𝑐,𝑥𝑂)

Proof of Theorem precsexlem9
Dummy variables 𝑖 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . . . 6 (𝑖 = ∅ → (𝐿𝑖) = (𝐿‘∅))
21raleqdv 3324 . . . . 5 (𝑖 = ∅ → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ))
3 fveq2 6891 . . . . . 6 (𝑖 = ∅ → (𝑅𝑖) = (𝑅‘∅))
43raleqdv 3324 . . . . 5 (𝑖 = ∅ → (∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)))
52, 4anbi12d 630 . . . 4 (𝑖 = ∅ → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐))))
65imbi2d 340 . . 3 (𝑖 = ∅ → ((𝜑 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)))))
7 fveq2 6891 . . . . . 6 (𝑖 = 𝑗 → (𝐿𝑖) = (𝐿𝑗))
87raleqdv 3324 . . . . 5 (𝑖 = 𝑗 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ))
9 fveq2 6891 . . . . . 6 (𝑖 = 𝑗 → (𝑅𝑖) = (𝑅𝑗))
109raleqdv 3324 . . . . 5 (𝑖 = 𝑗 → (∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐)))
118, 10anbi12d 630 . . . 4 (𝑖 = 𝑗 → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))))
1211imbi2d 340 . . 3 (𝑖 = 𝑗 → ((𝜑 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐)))))
13 fveq2 6891 . . . . . . 7 (𝑖 = suc 𝑗 → (𝐿𝑖) = (𝐿‘suc 𝑗))
1413raleqdv 3324 . . . . . 6 (𝑖 = suc 𝑗 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ))
15 fveq2 6891 . . . . . . 7 (𝑖 = suc 𝑗 → (𝑅𝑖) = (𝑅‘suc 𝑗))
1615raleqdv 3324 . . . . . 6 (𝑖 = suc 𝑗 → (∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐)))
1714, 16anbi12d 630 . . . . 5 (𝑖 = suc 𝑗 → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐))))
18 oveq2 7420 . . . . . . . 8 (𝑏 = 𝑟 → (𝐴 ·s 𝑏) = (𝐴 ·s 𝑟))
1918breq1d 5158 . . . . . . 7 (𝑏 = 𝑟 → ((𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 𝑟) <s 1s ))
2019cbvralvw 3233 . . . . . 6 (∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s )
21 oveq2 7420 . . . . . . . 8 (𝑐 = 𝑠 → (𝐴 ·s 𝑐) = (𝐴 ·s 𝑠))
2221breq2d 5160 . . . . . . 7 (𝑐 = 𝑠 → ( 1s <s (𝐴 ·s 𝑐) ↔ 1s <s (𝐴 ·s 𝑠)))
2322cbvralvw 3233 . . . . . 6 (∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))
2420, 23anbi12i 626 . . . . 5 ((∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))
2517, 24bitrdi 287 . . . 4 (𝑖 = suc 𝑗 → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))))
2625imbi2d 340 . . 3 (𝑖 = suc 𝑗 → ((𝜑 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))))
27 fveq2 6891 . . . . . 6 (𝑖 = 𝐼 → (𝐿𝑖) = (𝐿𝐼))
2827raleqdv 3324 . . . . 5 (𝑖 = 𝐼 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ))
29 fveq2 6891 . . . . . 6 (𝑖 = 𝐼 → (𝑅𝑖) = (𝑅𝐼))
3029raleqdv 3324 . . . . 5 (𝑖 = 𝐼 → (∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐)))
3128, 30anbi12d 630 . . . 4 (𝑖 = 𝐼 → ((∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐))))
3231imbi2d 340 . . 3 (𝑖 = 𝐼 → ((𝜑 → (∀𝑏 ∈ (𝐿𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐)))))
33 precsexlem.4 . . . . . . 7 (𝜑𝐴 No )
34 muls01 27808 . . . . . . 7 (𝐴 No → (𝐴 ·s 0s ) = 0s )
3533, 34syl 17 . . . . . 6 (𝜑 → (𝐴 ·s 0s ) = 0s )
36 0slt1s 27568 . . . . . 6 0s <s 1s
3735, 36eqbrtrdi 5187 . . . . 5 (𝜑 → (𝐴 ·s 0s ) <s 1s )
38 precsexlem.1 . . . . . . . 8 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
39 precsexlem.2 . . . . . . . 8 𝐿 = (1st𝐹)
40 precsexlem.3 . . . . . . . 8 𝑅 = (2nd𝐹)
4138, 39, 40precsexlem1 27893 . . . . . . 7 (𝐿‘∅) = { 0s }
4241raleqi 3322 . . . . . 6 (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ { 0s } (𝐴 ·s 𝑏) <s 1s )
43 0sno 27565 . . . . . . . 8 0s No
4443elexi 3493 . . . . . . 7 0s ∈ V
45 oveq2 7420 . . . . . . . 8 (𝑏 = 0s → (𝐴 ·s 𝑏) = (𝐴 ·s 0s ))
4645breq1d 5158 . . . . . . 7 (𝑏 = 0s → ((𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 0s ) <s 1s ))
4744, 46ralsn 4685 . . . . . 6 (∀𝑏 ∈ { 0s } (𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 0s ) <s 1s )
4842, 47bitri 275 . . . . 5 (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 0s ) <s 1s )
4937, 48sylibr 233 . . . 4 (𝜑 → ∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s )
50 ral0 4512 . . . . 5 𝑐 ∈ ∅ 1s <s (𝐴 ·s 𝑐)
5138, 39, 40precsexlem2 27894 . . . . . 6 (𝑅‘∅) = ∅
5251raleqi 3322 . . . . 5 (∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ ∅ 1s <s (𝐴 ·s 𝑐))
5350, 52mpbir 230 . . . 4 𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)
5449, 53jctir 520 . . 3 (𝜑 → (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)))
5538, 39, 40precsexlem4 27896 . . . . . . . . . . . 12 (𝑗 ∈ ω → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
56553ad2ant2 1133 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
5756eleq2d 2818 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) ↔ 𝑟 ∈ ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))))
58 elun 4148 . . . . . . . . . . 11 (𝑟 ∈ ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})) ↔ (𝑟 ∈ (𝐿𝑗) ∨ 𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
59 elun 4148 . . . . . . . . . . . . 13 (𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) ↔ (𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∨ 𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
60 vex 3477 . . . . . . . . . . . . . . 15 𝑟 ∈ V
61 eqeq1 2735 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑟 → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ 𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
62612rexbidv 3218 . . . . . . . . . . . . . . 15 (𝑎 = 𝑟 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
6360, 62elab 3668 . . . . . . . . . . . . . 14 (𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
64 eqeq1 2735 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑟 → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ 𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
65642rexbidv 3218 . . . . . . . . . . . . . . 15 (𝑎 = 𝑟 → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
6660, 65elab 3668 . . . . . . . . . . . . . 14 (𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
6763, 66orbi12i 912 . . . . . . . . . . . . 13 ((𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∨ 𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
6859, 67bitri 275 . . . . . . . . . . . 12 (𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
6968orbi2i 910 . . . . . . . . . . 11 ((𝑟 ∈ (𝐿𝑗) ∨ 𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})) ↔ (𝑟 ∈ (𝐿𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))))
7058, 69bitri 275 . . . . . . . . . 10 (𝑟 ∈ ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})) ↔ (𝑟 ∈ (𝐿𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))))
7157, 70bitrdi 287 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) ↔ (𝑟 ∈ (𝐿𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))))
72 simp3l 1200 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s )
7319rspccv 3609 . . . . . . . . . . 11 (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s → (𝑟 ∈ (𝐿𝑗) → (𝐴 ·s 𝑟) <s 1s ))
7472, 73syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿𝑗) → (𝐴 ·s 𝑟) <s 1s ))
75333ad2ant1 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → 𝐴 No )
7675adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
77 1sno 27566 . . . . . . . . . . . . . . . . 17 1s No
7877a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
79 rightssno 27614 . . . . . . . . . . . . . . . . . . . . 21 ( R ‘𝐴) ⊆ No
8079sseli 3978 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝑥𝑅 No )
8180adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 No )
8275adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝐴 No )
8381, 82subscld 27775 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → (𝑥𝑅 -s 𝐴) ∈ No )
8483adantrr 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
85 precsexlem.5 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0s <s 𝐴)
86 precsexlem.6 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
8738, 39, 40, 33, 85, 86precsexlem8 27900 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ω) → ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ))
8887simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ω) → (𝐿𝑗) ⊆ No )
89883adant3 1131 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝐿𝑗) ⊆ No )
9089sselda 3982 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝐿 ∈ (𝐿𝑗)) → 𝑦𝐿 No )
9190adantrl 713 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
9284, 91mulscld 27831 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) ∈ No )
9378, 92addscld 27703 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
9481adantrr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 No )
9543a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s No )
96853ad2ant1 1132 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → 0s <s 𝐴)
9796adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s 𝐴)
98 breq2 5152 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑂 = 𝑥𝑅 → (𝐴 <s 𝑥𝑂𝐴 <s 𝑥𝑅))
99 rightval 27597 . . . . . . . . . . . . . . . . . . . . 21 ( R ‘𝐴) = {𝑥𝑂 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥𝑂}
10098, 99elrab2 3686 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑅 ∈ ( R ‘𝐴) ↔ (𝑥𝑅 ∈ ( O ‘( bday 𝐴)) ∧ 𝐴 <s 𝑥𝑅))
101100simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝐴 <s 𝑥𝑅)
102101adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑥𝑅)
10395, 82, 81, 97, 102slttrd 27499 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s 𝑥𝑅)
104103sgt0ne0d 27574 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ≠ 0s )
105104adantrr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ≠ 0s )
106 breq2 5152 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝑅))
107 oveq1 7419 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑂 = 𝑥𝑅 → (𝑥𝑂 ·s 𝑦) = (𝑥𝑅 ·s 𝑦))
108107eqeq1d 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑂 = 𝑥𝑅 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝑅 ·s 𝑦) = 1s ))
109108rexbidv 3177 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
110106, 109imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝑅 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )))
111863ad2ant1 1132 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
112111adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
113 elun2 4177 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
114113adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
115110, 112, 114rspcdva 3613 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
116103, 115mpd 15 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
117116adantrr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
11876, 93, 94, 105, 117divsasswd 27890 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝑅) = (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
119 oveq2 7420 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦𝐿 → (𝐴 ·s 𝑏) = (𝐴 ·s 𝑦𝐿))
120119breq1d 5158 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑦𝐿 → ((𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 𝑦𝐿) <s 1s ))
121120rspccva 3611 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s𝑦𝐿 ∈ (𝐿𝑗)) → (𝐴 ·s 𝑦𝐿) <s 1s )
12272, 121sylan 579 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝐿 ∈ (𝐿𝑗)) → (𝐴 ·s 𝑦𝐿) <s 1s )
123122adantrl 713 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 𝑦𝐿) <s 1s )
12476, 91mulscld 27831 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 𝑦𝐿) ∈ No )
12582, 81posdifsd 27801 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → (𝐴 <s 𝑥𝑅 ↔ 0s <s (𝑥𝑅 -s 𝐴)))
126102, 125mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s (𝑥𝑅 -s 𝐴))
127126adantrr 714 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s (𝑥𝑅 -s 𝐴))
128124, 78, 84, 127sltmul2d 27864 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s 𝑦𝐿) <s 1s ↔ ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s ((𝑥𝑅 -s 𝐴) ·s 1s )))
129123, 128mpbid 231 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s ((𝑥𝑅 -s 𝐴) ·s 1s ))
13084mulsridd 27810 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 1s ) = (𝑥𝑅 -s 𝐴))
131129, 130breqtrd 5174 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s (𝑥𝑅 -s 𝐴))
13284, 124mulscld 27831 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ∈ No )
13376, 132, 94sltaddsub2d 27799 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s 𝑥𝑅 ↔ ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s (𝑥𝑅 -s 𝐴)))
134131, 133mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s 𝑥𝑅)
13576, 78, 92addsdid 27851 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))))
13676mulsridd 27810 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 1s ) = 𝐴)
13776, 84, 91muls12d 27873 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) = ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))
138136, 137oveq12d 7430 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
139135, 138eqtrd 2771 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
14094mulslidd 27839 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s ·s 𝑥𝑅) = 𝑥𝑅)
141134, 139, 1403brtr4d 5180 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) <s ( 1s ·s 𝑥𝑅))
14276, 93mulscld 27831 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) ∈ No )
143103adantrr 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝑅)
144142, 78, 94, 143, 117sltdivmul2wd 27887 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝑅) <s 1s ↔ (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) <s ( 1s ·s 𝑥𝑅)))
145141, 144mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝑅) <s 1s )
146118, 145eqbrtrrd 5172 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)) <s 1s )
147 oveq2 7420 . . . . . . . . . . . . . 14 (𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → (𝐴 ·s 𝑟) = (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
148147breq1d 5158 . . . . . . . . . . . . 13 (𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → ((𝐴 ·s 𝑟) <s 1s ↔ (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)) <s 1s ))
149146, 148syl5ibrcom 246 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → (𝐴 ·s 𝑟) <s 1s ))
150149rexlimdvva 3210 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → (𝐴 ·s 𝑟) <s 1s ))
15175adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
15277a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
153 leftssno 27613 . . . . . . . . . . . . . . . . . . . 20 ( L ‘𝐴) ⊆ No
154 elrabi 3677 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑥𝐿 ∈ ( L ‘𝐴))
155154adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 ∈ ( L ‘𝐴))
156153, 155sselid 3980 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 No )
15775adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝐴 No )
158156, 157subscld 27775 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑥𝐿 -s 𝐴) ∈ No )
159158adantrr 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
16087simprd 495 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ω) → (𝑅𝑗) ⊆ No )
1611603adant3 1131 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑅𝑗) ⊆ No )
162161sselda 3982 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝑅 ∈ (𝑅𝑗)) → 𝑦𝑅 No )
163162adantrl 713 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
164159, 163mulscld 27831 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) ∈ No )
165152, 164addscld 27703 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
166156adantrr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 No )
167 breq2 5152 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑥𝐿 → ( 0s <s 𝑥 ↔ 0s <s 𝑥𝐿))
168167elrab 3683 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ↔ (𝑥𝐿 ∈ ( L ‘𝐴) ∧ 0s <s 𝑥𝐿))
169168simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 0s <s 𝑥𝐿)
170169adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 0s <s 𝑥𝐿)
171170sgt0ne0d 27574 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 ≠ 0s )
172171adantrr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ≠ 0s )
173 breq2 5152 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝐿))
174 oveq1 7419 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑂 = 𝑥𝐿 → (𝑥𝑂 ·s 𝑦) = (𝑥𝐿 ·s 𝑦))
175174eqeq1d 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑂 = 𝑥𝐿 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝐿 ·s 𝑦) = 1s ))
176175rexbidv 3177 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
177173, 176imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝐿 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )))
178111adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
179 elun1 4176 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
180155, 179syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
181177, 178, 180rspcdva 3613 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
182170, 181mpd 15 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
183182adantrr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
184151, 165, 166, 172, 183divsasswd 27890 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝐿) = (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
185157, 156subscld 27775 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝐴 -s 𝑥𝐿) ∈ No )
186185adantrr 714 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 -s 𝑥𝐿) ∈ No )
187186mulsridd 27810 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 -s 𝑥𝐿) ·s 1s ) = (𝐴 -s 𝑥𝐿))
188 simp3r 1201 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))
189 oveq2 7420 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = 𝑦𝑅 → (𝐴 ·s 𝑐) = (𝐴 ·s 𝑦𝑅))
190189breq2d 5160 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = 𝑦𝑅 → ( 1s <s (𝐴 ·s 𝑐) ↔ 1s <s (𝐴 ·s 𝑦𝑅)))
191190rspccva 3611 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐) ∧ 𝑦𝑅 ∈ (𝑅𝑗)) → 1s <s (𝐴 ·s 𝑦𝑅))
192188, 191sylan 579 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝑅 ∈ (𝑅𝑗)) → 1s <s (𝐴 ·s 𝑦𝑅))
193192adantrl 713 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s <s (𝐴 ·s 𝑦𝑅))
194151, 163mulscld 27831 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s 𝑦𝑅) ∈ No )
195 breq1 5151 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝑂 = 𝑥𝐿 → (𝑥𝑂 <s 𝐴𝑥𝐿 <s 𝐴))
196 leftval 27596 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( L ‘𝐴) = {𝑥𝑂 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥𝑂 <s 𝐴}
197195, 196elrab2 3686 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝐿 ∈ ( L ‘𝐴) ↔ (𝑥𝐿 ∈ ( O ‘( bday 𝐴)) ∧ 𝑥𝐿 <s 𝐴))
198197simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 <s 𝐴)
199155, 198syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑥𝐿 <s 𝐴)
200156, 157posdifsd 27801 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑥𝐿 <s 𝐴 ↔ 0s <s (𝐴 -s 𝑥𝐿)))
201199, 200mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 0s <s (𝐴 -s 𝑥𝐿))
202201adantrr 714 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s (𝐴 -s 𝑥𝐿))
203152, 194, 186, 202sltmul2d 27864 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s <s (𝐴 ·s 𝑦𝑅) ↔ ((𝐴 -s 𝑥𝐿) ·s 1s ) <s ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅))))
204193, 203mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 -s 𝑥𝐿) ·s 1s ) <s ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
205187, 204eqbrtrrd 5172 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 -s 𝑥𝐿) <s ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
206156, 157negsubsdi2d 27787 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ( -us ‘(𝑥𝐿 -s 𝐴)) = (𝐴 -s 𝑥𝐿))
207206adantrr 714 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( -us ‘(𝑥𝐿 -s 𝐴)) = (𝐴 -s 𝑥𝐿))
208159, 194mulnegs1d 27855 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝑅)) = ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
209206oveq1d 7427 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝑅)) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
210209adantrr 714 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝑅)) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
211208, 210eqtr3d 2773 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝑅)))
212205, 207, 2113brtr4d 5180 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( -us ‘(𝑥𝐿 -s 𝐴)) <s ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
213159, 194mulscld 27831 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ∈ No )
214213, 159sltnegd 27761 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s (𝑥𝐿 -s 𝐴) ↔ ( -us ‘(𝑥𝐿 -s 𝐴)) <s ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))))
215212, 214mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s (𝑥𝐿 -s 𝐴))
216151, 213, 166sltaddsub2d 27799 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) <s 𝑥𝐿 ↔ ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s (𝑥𝐿 -s 𝐴)))
217215, 216mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) <s 𝑥𝐿)
218151, 152, 164addsdid 27851 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) = ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))))
219151mulsridd 27810 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s 1s ) = 𝐴)
220151, 159, 163muls12d 27873 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) = ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))
221219, 220oveq12d 7430 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
222218, 221eqtrd 2771 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
223166mulsridd 27810 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝐿 ·s 1s ) = 𝑥𝐿)
224217, 222, 2233brtr4d 5180 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) <s (𝑥𝐿 ·s 1s ))
225151, 165mulscld 27831 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) ∈ No )
226170adantrr 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝐿)
227225, 152, 166, 226, 183sltdivmulwd 27886 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝐿) <s 1s ↔ (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) <s (𝑥𝐿 ·s 1s )))
228224, 227mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝐿) <s 1s )
229184, 228eqbrtrrd 5172 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)) <s 1s )
230 oveq2 7420 . . . . . . . . . . . . . 14 (𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → (𝐴 ·s 𝑟) = (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
231230breq1d 5158 . . . . . . . . . . . . 13 (𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → ((𝐴 ·s 𝑟) <s 1s ↔ (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)) <s 1s ))
232229, 231syl5ibrcom 246 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → (𝐴 ·s 𝑟) <s 1s ))
233232rexlimdvva 3210 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → (𝐴 ·s 𝑟) <s 1s ))
234150, 233jaod 856 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ((∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)) → (𝐴 ·s 𝑟) <s 1s ))
23574, 234jaod 856 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ((𝑟 ∈ (𝐿𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑟 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∨ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑟 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))) → (𝐴 ·s 𝑟) <s 1s ))
23671, 235sylbid 239 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) → (𝐴 ·s 𝑟) <s 1s ))
237236ralrimiv 3144 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s )
23838, 39, 40precsexlem5 27897 . . . . . . . . . . . 12 (𝑗 ∈ ω → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
2392383ad2ant2 1133 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
240239eleq2d 2818 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) ↔ 𝑠 ∈ ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))))
241 elun 4148 . . . . . . . . . . 11 (𝑠 ∈ ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})) ↔ (𝑠 ∈ (𝑅𝑗) ∨ 𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
242 elun 4148 . . . . . . . . . . . . 13 (𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) ↔ (𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∨ 𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))
243 vex 3477 . . . . . . . . . . . . . . 15 𝑠 ∈ V
244 eqeq1 2735 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑠 → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ 𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
2452442rexbidv 3218 . . . . . . . . . . . . . . 15 (𝑎 = 𝑠 → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
246243, 245elab 3668 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
247 eqeq1 2735 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑠 → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ 𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
2482472rexbidv 3218 . . . . . . . . . . . . . . 15 (𝑎 = 𝑠 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
249243, 248elab 3668 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
250246, 249orbi12i 912 . . . . . . . . . . . . 13 ((𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∨ 𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) ↔ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
251242, 250bitri 275 . . . . . . . . . . . 12 (𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) ↔ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
252251orbi2i 910 . . . . . . . . . . 11 ((𝑠 ∈ (𝑅𝑗) ∨ 𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})) ↔ (𝑠 ∈ (𝑅𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))))
253241, 252bitri 275 . . . . . . . . . 10 (𝑠 ∈ ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})) ↔ (𝑠 ∈ (𝑅𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))))
254240, 253bitrdi 287 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) ↔ (𝑠 ∈ (𝑅𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))))
25522rspccv 3609 . . . . . . . . . . 11 (∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐) → (𝑠 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑠)))
256188, 255syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑠)))
257122adantrl 713 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 𝑦𝐿) <s 1s )
25875adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
25990adantrl 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
260258, 259mulscld 27831 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 𝑦𝐿) ∈ No )
26177a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
262185adantrr 714 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 -s 𝑥𝐿) ∈ No )
263201adantrr 714 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s (𝐴 -s 𝑥𝐿))
264260, 261, 262, 263sltmul2d 27864 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s 𝑦𝐿) <s 1s ↔ ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)) <s ((𝐴 -s 𝑥𝐿) ·s 1s )))
265257, 264mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)) <s ((𝐴 -s 𝑥𝐿) ·s 1s ))
266262mulsridd 27810 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 -s 𝑥𝐿) ·s 1s ) = (𝐴 -s 𝑥𝐿))
267265, 266breqtrd 5174 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)) <s (𝐴 -s 𝑥𝐿))
268158adantrr 714 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
269268, 260mulnegs1d 27855 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝐿)) = ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
270206oveq1d 7427 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝐿)) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)))
271270adantrr 714 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( -us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝐿)) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)))
272269, 271eqtr3d 2773 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) = ((𝐴 -s 𝑥𝐿) ·s (𝐴 ·s 𝑦𝐿)))
273206adantrr 714 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( -us ‘(𝑥𝐿 -s 𝐴)) = (𝐴 -s 𝑥𝐿))
274267, 272, 2733brtr4d 5180 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s ( -us ‘(𝑥𝐿 -s 𝐴)))
275268, 260mulscld 27831 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ∈ No )
276268, 275sltnegd 27761 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ↔ ( -us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s ( -us ‘(𝑥𝐿 -s 𝐴))))
277274, 276mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))
278156adantrr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 No )
279278, 258, 275sltsubadd2d 27797 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ↔ 𝑥𝐿 <s (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))))
280277, 279mpbid 231 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 <s (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
281278mulslidd 27839 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s ·s 𝑥𝐿) = 𝑥𝐿)
282268, 259mulscld 27831 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) ∈ No )
283258, 261, 282addsdid 27851 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))))
284258mulsridd 27810 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s 1s ) = 𝐴)
285258, 268, 259muls12d 27873 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) = ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))
286284, 285oveq12d 7430 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
287283, 286eqtrd 2771 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))))
288280, 281, 2873brtr4d 5180 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s ·s 𝑥𝐿) <s (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))))
289261, 282addscld 27703 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
290258, 289mulscld 27831 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) ∈ No )
291170adantrr 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝐿)
292182adantrr 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
293261, 290, 278, 291, 292sltmuldivwd 27888 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( 1s ·s 𝑥𝐿) <s (𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) ↔ 1s <s ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝐿)))
294288, 293mpbid 231 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s <s ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝐿))
295171adantrr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ≠ 0s )
296258, 289, 278, 295, 292divsasswd 27890 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) /su 𝑥𝐿) = (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
297294, 296breqtrd 5174 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s <s (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
298 oveq2 7420 . . . . . . . . . . . . . 14 (𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → (𝐴 ·s 𝑠) = (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
299298breq2d 5160 . . . . . . . . . . . . 13 (𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → ( 1s <s (𝐴 ·s 𝑠) ↔ 1s <s (𝐴 ·s (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))))
300297, 299syl5ibrcom 246 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 1s <s (𝐴 ·s 𝑠)))
301300rexlimdvva 3210 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 1s <s (𝐴 ·s 𝑠)))
30283adantrr 714 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
303302mulsridd 27810 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 1s ) = (𝑥𝑅 -s 𝐴))
304192adantrl 713 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s <s (𝐴 ·s 𝑦𝑅))
30577a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
30675adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
307162adantrl 713 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
308306, 307mulscld 27831 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s 𝑦𝑅) ∈ No )
309126adantrr 714 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s (𝑥𝑅 -s 𝐴))
310305, 308, 302, 309sltmul2d 27864 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s <s (𝐴 ·s 𝑦𝑅) ↔ ((𝑥𝑅 -s 𝐴) ·s 1s ) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
311304, 310mpbid 231 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 1s ) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))
312303, 311eqbrtrrd 5172 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝑅 -s 𝐴) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))
31381adantrr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 No )
314302, 308mulscld 27831 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ∈ No )
315313, 306, 314sltsubadd2d 27797 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ↔ 𝑥𝑅 <s (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))))
316312, 315mpbid 231 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 <s (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
317313mulslidd 27839 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s ·s 𝑥𝑅) = 𝑥𝑅)
318302, 307mulscld 27831 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) ∈ No )
319306, 305, 318addsdid 27851 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) = ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))))
320306mulsridd 27810 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s 1s ) = 𝐴)
321306, 302, 307muls12d 27873 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) = ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))
322320, 321oveq12d 7430 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s 1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
323319, 322eqtrd 2771 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))
324316, 317, 3233brtr4d 5180 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s ·s 𝑥𝑅) <s (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))))
325305, 318addscld 27703 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
326306, 325mulscld 27831 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) ∈ No )
327103adantrr 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝑅)
328116adantrr 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
329305, 326, 313, 327, 328sltmuldivwd 27888 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( 1s ·s 𝑥𝑅) <s (𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) ↔ 1s <s ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝑅)))
330324, 329mpbid 231 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s <s ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝑅))
331104adantrr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ≠ 0s )
332306, 325, 313, 331, 328divsasswd 27890 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝐴 ·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) /su 𝑥𝑅) = (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
333330, 332breqtrd 5174 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s <s (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
334 oveq2 7420 . . . . . . . . . . . . . 14 (𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → (𝐴 ·s 𝑠) = (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
335334breq2d 5160 . . . . . . . . . . . . 13 (𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → ( 1s <s (𝐴 ·s 𝑠) ↔ 1s <s (𝐴 ·s (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))))
336333, 335syl5ibrcom 246 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 1s <s (𝐴 ·s 𝑠)))
337336rexlimdvva 3210 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 1s <s (𝐴 ·s 𝑠)))
338301, 337jaod 856 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ((∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)) → 1s <s (𝐴 ·s 𝑠)))
339256, 338jaod 856 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ((𝑠 ∈ (𝑅𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑠 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑠 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))) → 1s <s (𝐴 ·s 𝑠)))
340254, 339sylbid 239 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) → 1s <s (𝐴 ·s 𝑠)))
341340ralrimiv 3144 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))
342237, 341jca 511 . . . . . 6 ((𝜑𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))
3433423exp 1118 . . . . 5 (𝜑 → (𝑗 ∈ ω → ((∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐)) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))))
344343com12 32 . . . 4 (𝑗 ∈ ω → (𝜑 → ((∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐)) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))))
345344a2d 29 . . 3 (𝑗 ∈ ω → ((𝜑 → (∀𝑏 ∈ (𝐿𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝜑 → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))))
3466, 12, 26, 32, 54, 345finds 7893 . 2 (𝐼 ∈ ω → (𝜑 → (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐))))
347346impcom 407 1 ((𝜑𝐼 ∈ ω) → (∀𝑏 ∈ (𝐿𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅𝐼) 1s <s (𝐴 ·s 𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844  w3a 1086   = wceq 1540  wcel 2105  {cab 2708  wne 2939  wral 3060  wrex 3069  {crab 3431  Vcvv 3473  csb 3893  cun 3946  wss 3948  c0 4322  {csn 4628  cop 4634   class class class wbr 5148  cmpt 5231  ccom 5680  suc csuc 6366  cfv 6543  (class class class)co 7412  ωcom 7859  1st c1st 7977  2nd c2nd 7978  reccrdg 8413   No csur 27380   <s cslt 27381   bday cbday 27382   0s c0s 27561   1s c1s 27562   O cold 27576   L cleft 27578   R cright 27579   +s cadds 27682   -us cnegs 27734   -s csubs 27735   ·s cmuls 27802   /su cdivs 27875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-nadd 8669  df-no 27383  df-slt 27384  df-bday 27385  df-sle 27485  df-sslt 27520  df-scut 27522  df-0s 27563  df-1s 27564  df-made 27580  df-old 27581  df-left 27583  df-right 27584  df-norec 27661  df-norec2 27672  df-adds 27683  df-negs 27736  df-subs 27737  df-muls 27803  df-divs 27876
This theorem is referenced by:  precsexlem10  27902  precsexlem11  27903
  Copyright terms: Public domain W3C validator