| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6881 |
. . . . . 6
⊢ (𝑖 = ∅ → (𝐿‘𝑖) = (𝐿‘∅)) |
| 2 | 1 | raleqdv 3309 |
. . . . 5
⊢ (𝑖 = ∅ → (∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s )) |
| 3 | | fveq2 6881 |
. . . . . 6
⊢ (𝑖 = ∅ → (𝑅‘𝑖) = (𝑅‘∅)) |
| 4 | 3 | raleqdv 3309 |
. . . . 5
⊢ (𝑖 = ∅ → (∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐))) |
| 5 | 2, 4 | anbi12d 632 |
. . . 4
⊢ (𝑖 = ∅ →
((∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)))) |
| 6 | 5 | imbi2d 340 |
. . 3
⊢ (𝑖 = ∅ → ((𝜑 → (∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐))))) |
| 7 | | fveq2 6881 |
. . . . . 6
⊢ (𝑖 = 𝑗 → (𝐿‘𝑖) = (𝐿‘𝑗)) |
| 8 | 7 | raleqdv 3309 |
. . . . 5
⊢ (𝑖 = 𝑗 → (∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s )) |
| 9 | | fveq2 6881 |
. . . . . 6
⊢ (𝑖 = 𝑗 → (𝑅‘𝑖) = (𝑅‘𝑗)) |
| 10 | 9 | raleqdv 3309 |
. . . . 5
⊢ (𝑖 = 𝑗 → (∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) |
| 11 | 8, 10 | anbi12d 632 |
. . . 4
⊢ (𝑖 = 𝑗 → ((∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐)))) |
| 12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑖 = 𝑗 → ((𝜑 → (∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))))) |
| 13 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑖 = suc 𝑗 → (𝐿‘𝑖) = (𝐿‘suc 𝑗)) |
| 14 | 13 | raleqdv 3309 |
. . . . . 6
⊢ (𝑖 = suc 𝑗 → (∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s )) |
| 15 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑖 = suc 𝑗 → (𝑅‘𝑖) = (𝑅‘suc 𝑗)) |
| 16 | 15 | raleqdv 3309 |
. . . . . 6
⊢ (𝑖 = suc 𝑗 → (∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐))) |
| 17 | 14, 16 | anbi12d 632 |
. . . . 5
⊢ (𝑖 = suc 𝑗 → ((∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐)))) |
| 18 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑏 = 𝑟 → (𝐴 ·s 𝑏) = (𝐴 ·s 𝑟)) |
| 19 | 18 | breq1d 5134 |
. . . . . . 7
⊢ (𝑏 = 𝑟 → ((𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 𝑟) <s 1s
)) |
| 20 | 19 | cbvralvw 3224 |
. . . . . 6
⊢
(∀𝑏 ∈
(𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ) |
| 21 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑐 = 𝑠 → (𝐴 ·s 𝑐) = (𝐴 ·s 𝑠)) |
| 22 | 21 | breq2d 5136 |
. . . . . . 7
⊢ (𝑐 = 𝑠 → ( 1s <s (𝐴 ·s 𝑐) ↔ 1s <s
(𝐴 ·s
𝑠))) |
| 23 | 22 | cbvralvw 3224 |
. . . . . 6
⊢
(∀𝑐 ∈
(𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)) |
| 24 | 20, 23 | anbi12i 628 |
. . . . 5
⊢
((∀𝑏 ∈
(𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))) |
| 25 | 17, 24 | bitrdi 287 |
. . . 4
⊢ (𝑖 = suc 𝑗 → ((∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))) |
| 26 | 25 | imbi2d 340 |
. . 3
⊢ (𝑖 = suc 𝑗 → ((𝜑 → (∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))))) |
| 27 | | fveq2 6881 |
. . . . . 6
⊢ (𝑖 = 𝐼 → (𝐿‘𝑖) = (𝐿‘𝐼)) |
| 28 | 27 | raleqdv 3309 |
. . . . 5
⊢ (𝑖 = 𝐼 → (∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿‘𝐼)(𝐴 ·s 𝑏) <s 1s )) |
| 29 | | fveq2 6881 |
. . . . . 6
⊢ (𝑖 = 𝐼 → (𝑅‘𝑖) = (𝑅‘𝐼)) |
| 30 | 29 | raleqdv 3309 |
. . . . 5
⊢ (𝑖 = 𝐼 → (∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅‘𝐼) 1s <s (𝐴 ·s 𝑐))) |
| 31 | 28, 30 | anbi12d 632 |
. . . 4
⊢ (𝑖 = 𝐼 → ((∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿‘𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝐼) 1s <s (𝐴 ·s 𝑐)))) |
| 32 | 31 | imbi2d 340 |
. . 3
⊢ (𝑖 = 𝐼 → ((𝜑 → (∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿‘𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝐼) 1s <s (𝐴 ·s 𝑐))))) |
| 33 | | precsexlem.4 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ No
) |
| 34 | | muls01 28072 |
. . . . . . 7
⊢ (𝐴 ∈
No → (𝐴
·s 0s ) = 0s ) |
| 35 | 33, 34 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐴 ·s 0s ) =
0s ) |
| 36 | | 0slt1s 27798 |
. . . . . 6
⊢
0s <s 1s |
| 37 | 35, 36 | eqbrtrdi 5163 |
. . . . 5
⊢ (𝜑 → (𝐴 ·s 0s ) <s
1s ) |
| 38 | | precsexlem.1 |
. . . . . . . 8
⊢ 𝐹 = rec((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉) |
| 39 | | precsexlem.2 |
. . . . . . . 8
⊢ 𝐿 = (1st ∘ 𝐹) |
| 40 | | precsexlem.3 |
. . . . . . . 8
⊢ 𝑅 = (2nd ∘ 𝐹) |
| 41 | 38, 39, 40 | precsexlem1 28166 |
. . . . . . 7
⊢ (𝐿‘∅) = {
0s } |
| 42 | 41 | raleqi 3307 |
. . . . . 6
⊢
(∀𝑏 ∈
(𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ↔
∀𝑏 ∈ {
0s } (𝐴
·s 𝑏)
<s 1s ) |
| 43 | | 0sno 27795 |
. . . . . . . 8
⊢
0s ∈ No |
| 44 | 43 | elexi 3487 |
. . . . . . 7
⊢
0s ∈ V |
| 45 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑏 = 0s → (𝐴 ·s 𝑏) = (𝐴 ·s 0s
)) |
| 46 | 45 | breq1d 5134 |
. . . . . . 7
⊢ (𝑏 = 0s → ((𝐴 ·s 𝑏) <s 1s ↔
(𝐴 ·s
0s ) <s 1s )) |
| 47 | 44, 46 | ralsn 4662 |
. . . . . 6
⊢
(∀𝑏 ∈ {
0s } (𝐴
·s 𝑏)
<s 1s ↔ (𝐴 ·s 0s ) <s
1s ) |
| 48 | 42, 47 | bitri 275 |
. . . . 5
⊢
(∀𝑏 ∈
(𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ↔
(𝐴 ·s
0s ) <s 1s ) |
| 49 | 37, 48 | sylibr 234 |
. . . 4
⊢ (𝜑 → ∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ) |
| 50 | | ral0 4493 |
. . . . 5
⊢
∀𝑐 ∈
∅ 1s <s (𝐴 ·s 𝑐) |
| 51 | 38, 39, 40 | precsexlem2 28167 |
. . . . . 6
⊢ (𝑅‘∅) =
∅ |
| 52 | 51 | raleqi 3307 |
. . . . 5
⊢
(∀𝑐 ∈
(𝑅‘∅)
1s <s (𝐴
·s 𝑐)
↔ ∀𝑐 ∈
∅ 1s <s (𝐴 ·s 𝑐)) |
| 53 | 50, 52 | mpbir 231 |
. . . 4
⊢
∀𝑐 ∈
(𝑅‘∅)
1s <s (𝐴
·s 𝑐) |
| 54 | 49, 53 | jctir 520 |
. . 3
⊢ (𝜑 → (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐))) |
| 55 | 38, 39, 40 | precsexlem4 28169 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ω → (𝐿‘suc 𝑗) = ((𝐿‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
| 56 | 55 | 3ad2ant2 1134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝐿‘suc 𝑗) = ((𝐿‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
| 57 | 56 | eleq2d 2821 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) ↔ 𝑟 ∈ ((𝐿‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})))) |
| 58 | | elun 4133 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ ((𝐿‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))
↔ (𝑟 ∈ (𝐿‘𝑗) ∨ 𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
| 59 | | elun 4133 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})
↔ (𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝐿 ∈
(𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∨ 𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})) |
| 60 | | vex 3468 |
. . . . . . . . . . . . . . 15
⊢ 𝑟 ∈ V |
| 61 | | eqeq1 2740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑟 → (𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)
↔ 𝑟 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅))) |
| 62 | 61 | 2rexbidv 3210 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑟 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅))) |
| 63 | 60, 62 | elab 3663 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)) |
| 64 | | eqeq1 2740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑟 → (𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
↔ 𝑟 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿))) |
| 65 | 64 | 2rexbidv 3210 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑟 → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿))) |
| 66 | 60, 65 | elab 3663 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)) |
| 67 | 63, 66 | orbi12i 914 |
. . . . . . . . . . . . 13
⊢ ((𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∨ 𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})
↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅) ∨
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿))) |
| 68 | 59, 67 | bitri 275 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})
↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅) ∨
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿))) |
| 69 | 68 | orbi2i 912 |
. . . . . . . . . . 11
⊢ ((𝑟 ∈ (𝐿‘𝑗) ∨ 𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))
↔ (𝑟 ∈ (𝐿‘𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅) ∨
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)))) |
| 70 | 58, 69 | bitri 275 |
. . . . . . . . . 10
⊢ (𝑟 ∈ ((𝐿‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))
↔ (𝑟 ∈ (𝐿‘𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅) ∨
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)))) |
| 71 | 57, 70 | bitrdi 287 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) ↔ (𝑟 ∈ (𝐿‘𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅) ∨
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿))))) |
| 72 | | simp3l 1202 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ) |
| 73 | 19 | rspccv 3603 |
. . . . . . . . . . 11
⊢
(∀𝑏 ∈
(𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s → (𝑟 ∈ (𝐿‘𝑗) → (𝐴 ·s 𝑟) <s 1s )) |
| 74 | 72, 73 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘𝑗) → (𝐴 ·s 𝑟) <s 1s )) |
| 75 | 33 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → 𝐴 ∈ No
) |
| 76 | 75 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝐴 ∈ No
) |
| 77 | | 1sno 27796 |
. . . . . . . . . . . . . . . . 17
⊢
1s ∈ No |
| 78 | 77 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 1s ∈ No ) |
| 79 | | rightssno 27850 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ( R
‘𝐴) ⊆ No |
| 80 | 79 | sseli 3959 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥𝑅 ∈ ( R
‘𝐴) → 𝑥𝑅 ∈
No ) |
| 81 | 80 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ∈ No ) |
| 82 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝐴 ∈ No
) |
| 83 | 81, 82 | subscld 28024 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → (𝑥𝑅 -s 𝐴) ∈
No ) |
| 84 | 83 | adantrr 717 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝑥𝑅 -s 𝐴) ∈
No ) |
| 85 | | precsexlem.5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 0s <s 𝐴) |
| 86 | | precsexlem.6 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s
)) |
| 87 | 38, 39, 40, 33, 85, 86 | precsexlem8 28173 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) |
| 88 | 87 | simpld 494 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝐿‘𝑗) ⊆ No
) |
| 89 | 88 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝐿‘𝑗) ⊆ No
) |
| 90 | 89 | sselda 3963 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗)) → 𝑦𝐿 ∈ No ) |
| 91 | 90 | adantrl 716 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑦𝐿 ∈ No ) |
| 92 | 84, 91 | mulscld 28095 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) ∈
No ) |
| 93 | 78, 92 | addscld 27944 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( 1s +s
((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) ∈ No ) |
| 94 | 81 | adantrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝑅 ∈ No ) |
| 95 | 43 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s ∈
No ) |
| 96 | 85 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → 0s <s 𝐴) |
| 97 | 96 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s
𝐴) |
| 98 | | rightgt 27833 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑅 ∈ ( R
‘𝐴) → 𝐴 <s 𝑥𝑅) |
| 99 | 98 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑥𝑅) |
| 100 | 95, 82, 81, 97, 99 | slttrd 27728 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s
𝑥𝑅) |
| 101 | 100 | sgt0ne0d 27805 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ≠ 0s
) |
| 102 | 101 | adantrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝑅 ≠ 0s
) |
| 103 | | breq2 5128 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝑅 → (
0s <s 𝑥𝑂 ↔ 0s
<s 𝑥𝑅)) |
| 104 | | oveq1 7417 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥𝑂 = 𝑥𝑅 →
(𝑥𝑂
·s 𝑦) =
(𝑥𝑅
·s 𝑦)) |
| 105 | 104 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥𝑂 = 𝑥𝑅 →
((𝑥𝑂
·s 𝑦) =
1s ↔ (𝑥𝑅 ·s
𝑦) = 1s
)) |
| 106 | 105 | rexbidv 3165 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝑅 →
(∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s ↔
∃𝑦 ∈ No (𝑥𝑅 ·s
𝑦) = 1s
)) |
| 107 | 103, 106 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑂 = 𝑥𝑅 → ((
0s <s 𝑥𝑂 → ∃𝑦 ∈
No (𝑥𝑂 ·s
𝑦) = 1s ) ↔
( 0s <s 𝑥𝑅 → ∃𝑦 ∈
No (𝑥𝑅 ·s
𝑦) = 1s
))) |
| 108 | 86 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s
)) |
| 109 | 108 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ∀𝑥𝑂 ∈ (( L
‘𝐴) ∪ ( R
‘𝐴))( 0s
<s 𝑥𝑂
→ ∃𝑦 ∈
No (𝑥𝑂 ·s
𝑦) = 1s
)) |
| 110 | | elun2 4163 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑅 ∈ ( R
‘𝐴) → 𝑥𝑅 ∈ (( L
‘𝐴) ∪ ( R
‘𝐴))) |
| 111 | 110 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) |
| 112 | 107, 109,
111 | rspcdva 3607 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ( 0s <s
𝑥𝑅
→ ∃𝑦 ∈
No (𝑥𝑅 ·s
𝑦) = 1s
)) |
| 113 | 100, 112 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ∃𝑦 ∈
No (𝑥𝑅 ·s
𝑦) = 1s
) |
| 114 | 113 | adantrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ∃𝑦 ∈ No
(𝑥𝑅
·s 𝑦) =
1s ) |
| 115 | 76, 93, 94, 102, 114 | divsasswd 28163 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)))
/su 𝑥𝑅) = (𝐴 ·s (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅))) |
| 116 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 = 𝑦𝐿 → (𝐴 ·s 𝑏) = (𝐴 ·s 𝑦𝐿)) |
| 117 | 116 | breq1d 5134 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = 𝑦𝐿 → ((𝐴 ·s 𝑏) <s 1s ↔
(𝐴 ·s
𝑦𝐿) <s
1s )) |
| 118 | 117 | rspccva 3605 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((∀𝑏 ∈
(𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ 𝑦𝐿 ∈
(𝐿‘𝑗)) → (𝐴 ·s 𝑦𝐿) <s 1s
) |
| 119 | 72, 118 | sylan 580 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗)) → (𝐴 ·s 𝑦𝐿) <s 1s
) |
| 120 | 119 | adantrl 716 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s 𝑦𝐿) <s 1s
) |
| 121 | 76, 91 | mulscld 28095 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s 𝑦𝐿) ∈ No ) |
| 122 | 82, 81 | posdifsd 28058 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → (𝐴 <s 𝑥𝑅 ↔ 0s
<s (𝑥𝑅 -s 𝐴))) |
| 123 | 99, 122 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s
(𝑥𝑅
-s 𝐴)) |
| 124 | 123 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 0s <s (𝑥𝑅
-s 𝐴)) |
| 125 | 121, 78, 84, 124 | sltmul2d 28132 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 ·s 𝑦𝐿) <s 1s
↔ ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s
((𝑥𝑅
-s 𝐴)
·s 1s ))) |
| 126 | 120, 125 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s
((𝑥𝑅
-s 𝐴)
·s 1s )) |
| 127 | 84 | mulsridd 28074 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s
1s ) = (𝑥𝑅 -s 𝐴)) |
| 128 | 126, 127 | breqtrd 5150 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s
(𝑥𝑅
-s 𝐴)) |
| 129 | 84, 121 | mulscld 28095 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ∈
No ) |
| 130 | 76, 129, 94 | sltaddsub2d 28053 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s
𝑥𝑅
↔ ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s
(𝑥𝑅
-s 𝐴))) |
| 131 | 128, 130 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s
𝑥𝑅) |
| 132 | 76, 78, 92 | addsdid 28116 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = ((𝐴 ·s
1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)))) |
| 133 | 76 | mulsridd 28074 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s 1s ) =
𝐴) |
| 134 | 76, 84, 91 | muls12d 28141 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) = ((𝑥𝑅
-s 𝐴)
·s (𝐴
·s 𝑦𝐿))) |
| 135 | 133, 134 | oveq12d 7428 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 ·s 1s )
+s (𝐴
·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝑅
-s 𝐴)
·s (𝐴
·s 𝑦𝐿)))) |
| 136 | 132, 135 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝑅
-s 𝐴)
·s (𝐴
·s 𝑦𝐿)))) |
| 137 | 94 | mulslidd 28103 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( 1s
·s 𝑥𝑅) = 𝑥𝑅) |
| 138 | 131, 136,
137 | 3brtr4d 5156 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) <s (
1s ·s 𝑥𝑅)) |
| 139 | 76, 93 | mulscld 28095 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) ∈
No ) |
| 140 | 100 | adantrr 717 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 0s <s 𝑥𝑅) |
| 141 | 139, 78, 94, 140, 114 | sltdivmul2wd 28160 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (((𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)))
/su 𝑥𝑅) <s 1s
↔ (𝐴
·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) <s (
1s ·s 𝑥𝑅))) |
| 142 | 138, 141 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)))
/su 𝑥𝑅) <s 1s
) |
| 143 | 115, 142 | eqbrtrrd 5148 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅)) <s 1s
) |
| 144 | | oveq2 7418 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅) → (𝐴 ·s 𝑟) = (𝐴 ·s (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅))) |
| 145 | 144 | breq1d 5134 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅) → ((𝐴 ·s 𝑟) <s 1s ↔
(𝐴 ·s ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅)) <s 1s
)) |
| 146 | 143, 145 | syl5ibrcom 247 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)
→ (𝐴
·s 𝑟)
<s 1s )) |
| 147 | 146 | rexlimdvva 3202 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)
→ (𝐴
·s 𝑟)
<s 1s )) |
| 148 | 75 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝐴 ∈ No
) |
| 149 | 77 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 1s ∈ No ) |
| 150 | | leftssno 27849 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( L
‘𝐴) ⊆ No |
| 151 | | elrabi 3671 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} → 𝑥𝐿 ∈ ( L
‘𝐴)) |
| 152 | 151 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → 𝑥𝐿 ∈ ( L
‘𝐴)) |
| 153 | 150, 152 | sselid 3961 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → 𝑥𝐿 ∈
No ) |
| 154 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → 𝐴 ∈
No ) |
| 155 | 153, 154 | subscld 28024 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → (𝑥𝐿
-s 𝐴) ∈
No ) |
| 156 | 155 | adantrr 717 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑥𝐿 -s 𝐴) ∈
No ) |
| 157 | 87 | simprd 495 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝑅‘𝑗) ⊆ No
) |
| 158 | 157 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑅‘𝑗) ⊆ No
) |
| 159 | 158 | sselda 3963 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗)) → 𝑦𝑅 ∈ No ) |
| 160 | 159 | adantrl 716 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑦𝑅 ∈ No ) |
| 161 | 156, 160 | mulscld 28095 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) ∈
No ) |
| 162 | 149, 161 | addscld 27944 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( 1s +s
((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) ∈ No ) |
| 163 | 153 | adantrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝐿 ∈ No ) |
| 164 | | breq2 5128 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑥𝐿 → ( 0s
<s 𝑥 ↔
0s <s 𝑥𝐿)) |
| 165 | 164 | elrab 3676 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ↔ (𝑥𝐿 ∈ ( L
‘𝐴) ∧
0s <s 𝑥𝐿)) |
| 166 | 165 | simprbi 496 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} → 0s
<s 𝑥𝐿) |
| 167 | 166 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → 0s
<s 𝑥𝐿) |
| 168 | 167 | sgt0ne0d 27805 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → 𝑥𝐿 ≠
0s ) |
| 169 | 168 | adantrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝐿 ≠ 0s
) |
| 170 | | breq2 5128 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝐿 → (
0s <s 𝑥𝑂 ↔ 0s
<s 𝑥𝐿)) |
| 171 | | oveq1 7417 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥𝑂 = 𝑥𝐿 →
(𝑥𝑂
·s 𝑦) =
(𝑥𝐿
·s 𝑦)) |
| 172 | 171 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥𝑂 = 𝑥𝐿 →
((𝑥𝑂
·s 𝑦) =
1s ↔ (𝑥𝐿 ·s
𝑦) = 1s
)) |
| 173 | 172 | rexbidv 3165 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝐿 →
(∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s ↔
∃𝑦 ∈ No (𝑥𝐿 ·s
𝑦) = 1s
)) |
| 174 | 170, 173 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑂 = 𝑥𝐿 → ((
0s <s 𝑥𝑂 → ∃𝑦 ∈
No (𝑥𝑂 ·s
𝑦) = 1s ) ↔
( 0s <s 𝑥𝐿 → ∃𝑦 ∈
No (𝑥𝐿 ·s
𝑦) = 1s
))) |
| 175 | 108 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → ∀𝑥𝑂 ∈ (( L
‘𝐴) ∪ ( R
‘𝐴))( 0s
<s 𝑥𝑂
→ ∃𝑦 ∈
No (𝑥𝑂 ·s
𝑦) = 1s
)) |
| 176 | | elun1 4162 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝐿 ∈ ( L
‘𝐴) → 𝑥𝐿 ∈ (( L
‘𝐴) ∪ ( R
‘𝐴))) |
| 177 | 152, 176 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → 𝑥𝐿 ∈ (( L
‘𝐴) ∪ ( R
‘𝐴))) |
| 178 | 174, 175,
177 | rspcdva 3607 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → ( 0s
<s 𝑥𝐿
→ ∃𝑦 ∈
No (𝑥𝐿 ·s
𝑦) = 1s
)) |
| 179 | 167, 178 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → ∃𝑦 ∈
No (𝑥𝐿 ·s
𝑦) = 1s
) |
| 180 | 179 | adantrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ∃𝑦 ∈ No
(𝑥𝐿
·s 𝑦) =
1s ) |
| 181 | 148, 162,
163, 169, 180 | divsasswd 28163 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)))
/su 𝑥𝐿) = (𝐴 ·s (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿))) |
| 182 | 154, 153 | subscld 28024 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → (𝐴 -s 𝑥𝐿) ∈
No ) |
| 183 | 182 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 -s 𝑥𝐿) ∈ No ) |
| 184 | 183 | mulsridd 28074 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝐴 -s 𝑥𝐿) ·s
1s ) = (𝐴
-s 𝑥𝐿)) |
| 185 | | simp3r 1203 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐)) |
| 186 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑐 = 𝑦𝑅 → (𝐴 ·s 𝑐) = (𝐴 ·s 𝑦𝑅)) |
| 187 | 186 | breq2d 5136 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 = 𝑦𝑅 → ( 1s
<s (𝐴
·s 𝑐)
↔ 1s <s (𝐴 ·s 𝑦𝑅))) |
| 188 | 187 | rspccva 3605 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((∀𝑐 ∈
(𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗)) → 1s <s (𝐴 ·s 𝑦𝑅)) |
| 189 | 185, 188 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗)) → 1s <s (𝐴 ·s 𝑦𝑅)) |
| 190 | 189 | adantrl 716 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 1s <s (𝐴 ·s 𝑦𝑅)) |
| 191 | 148, 160 | mulscld 28095 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s 𝑦𝑅) ∈ No ) |
| 192 | | leftlt 27832 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥𝐿 ∈ ( L
‘𝐴) → 𝑥𝐿 <s 𝐴) |
| 193 | 152, 192 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → 𝑥𝐿 <s 𝐴) |
| 194 | 153, 154 | posdifsd 28058 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → (𝑥𝐿 <s 𝐴 ↔ 0s <s
(𝐴 -s 𝑥𝐿))) |
| 195 | 193, 194 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → 0s
<s (𝐴 -s
𝑥𝐿)) |
| 196 | 195 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 0s <s (𝐴 -s 𝑥𝐿)) |
| 197 | 149, 191,
183, 196 | sltmul2d 28132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( 1s <s (𝐴 ·s 𝑦𝑅) ↔
((𝐴 -s 𝑥𝐿)
·s 1s ) <s ((𝐴 -s 𝑥𝐿) ·s
(𝐴 ·s
𝑦𝑅)))) |
| 198 | 190, 197 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝐴 -s 𝑥𝐿) ·s
1s ) <s ((𝐴
-s 𝑥𝐿) ·s
(𝐴 ·s
𝑦𝑅))) |
| 199 | 184, 198 | eqbrtrrd 5148 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 -s 𝑥𝐿) <s ((𝐴 -s 𝑥𝐿)
·s (𝐴
·s 𝑦𝑅))) |
| 200 | 153, 154 | negsubsdi2d 28041 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → ( -us
‘(𝑥𝐿 -s 𝐴)) = (𝐴 -s 𝑥𝐿)) |
| 201 | 200 | adantrr 717 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( -us ‘(𝑥𝐿
-s 𝐴)) = (𝐴 -s 𝑥𝐿)) |
| 202 | 156, 191 | mulnegs1d 28120 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (( -us ‘(𝑥𝐿
-s 𝐴))
·s (𝐴
·s 𝑦𝑅)) = ( -us
‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))) |
| 203 | 200 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → ((
-us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝑅)) = ((𝐴 -s 𝑥𝐿)
·s (𝐴
·s 𝑦𝑅))) |
| 204 | 203 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (( -us ‘(𝑥𝐿
-s 𝐴))
·s (𝐴
·s 𝑦𝑅)) = ((𝐴 -s 𝑥𝐿) ·s
(𝐴 ·s
𝑦𝑅))) |
| 205 | 202, 204 | eqtr3d 2773 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( -us ‘((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝑅))) = ((𝐴 -s 𝑥𝐿) ·s
(𝐴 ·s
𝑦𝑅))) |
| 206 | 199, 201,
205 | 3brtr4d 5156 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( -us ‘(𝑥𝐿
-s 𝐴)) <s (
-us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))) |
| 207 | 156, 191 | mulscld 28095 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ∈
No ) |
| 208 | 207, 156 | sltnegd 28010 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s
(𝑥𝐿
-s 𝐴) ↔ (
-us ‘(𝑥𝐿 -s 𝐴)) <s ( -us
‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))) |
| 209 | 206, 208 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s
(𝑥𝐿
-s 𝐴)) |
| 210 | 148, 207,
163 | sltaddsub2d 28053 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) <s
𝑥𝐿
↔ ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s
(𝑥𝐿
-s 𝐴))) |
| 211 | 209, 210 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) <s
𝑥𝐿) |
| 212 | 148, 149,
161 | addsdid 28116 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) =
((𝐴 ·s
1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)))) |
| 213 | 148 | mulsridd 28074 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s 1s ) =
𝐴) |
| 214 | 148, 156,
160 | muls12d 28141 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) = ((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝑅))) |
| 215 | 213, 214 | oveq12d 7428 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝐴 ·s 1s )
+s (𝐴
·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝑅)))) |
| 216 | 212, 215 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝑅)))) |
| 217 | 163 | mulsridd 28074 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑥𝐿 ·s
1s ) = 𝑥𝐿) |
| 218 | 211, 216,
217 | 3brtr4d 5156 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) <s
(𝑥𝐿
·s 1s )) |
| 219 | 148, 162 | mulscld 28095 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) ∈
No ) |
| 220 | 167 | adantrr 717 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 0s <s 𝑥𝐿) |
| 221 | 219, 149,
163, 220, 180 | sltdivmulwd 28159 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (((𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)))
/su 𝑥𝐿) <s 1s
↔ (𝐴
·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) <s
(𝑥𝐿
·s 1s ))) |
| 222 | 218, 221 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)))
/su 𝑥𝐿) <s 1s
) |
| 223 | 181, 222 | eqbrtrrd 5148 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿)) <s 1s
) |
| 224 | | oveq2 7418 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿) → (𝐴 ·s 𝑟) = (𝐴 ·s (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿))) |
| 225 | 224 | breq1d 5134 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿) → ((𝐴 ·s 𝑟) <s 1s ↔
(𝐴 ·s ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿)) <s 1s
)) |
| 226 | 223, 225 | syl5ibrcom 247 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
→ (𝐴
·s 𝑟)
<s 1s )) |
| 227 | 226 | rexlimdvva 3202 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
→ (𝐴
·s 𝑟)
<s 1s )) |
| 228 | 147, 227 | jaod 859 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ((∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅) ∨
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿))
→ (𝐴
·s 𝑟)
<s 1s )) |
| 229 | 74, 228 | jaod 859 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ((𝑟 ∈ (𝐿‘𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅) ∨
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)))
→ (𝐴
·s 𝑟)
<s 1s )) |
| 230 | 71, 229 | sylbid 240 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) → (𝐴 ·s 𝑟) <s 1s )) |
| 231 | 230 | ralrimiv 3132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ) |
| 232 | 38, 39, 40 | precsexlem5 28170 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ω → (𝑅‘suc 𝑗) = ((𝑅‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
| 233 | 232 | 3ad2ant2 1134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑅‘suc 𝑗) = ((𝑅‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
| 234 | 233 | eleq2d 2821 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) ↔ 𝑠 ∈ ((𝑅‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})))) |
| 235 | | elun 4133 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ((𝑅‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))
↔ (𝑠 ∈ (𝑅‘𝑗) ∨ 𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
| 236 | | elun 4133 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})
↔ (𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∨ 𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝑅 ∈
(𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})) |
| 237 | | vex 3468 |
. . . . . . . . . . . . . . 15
⊢ 𝑠 ∈ V |
| 238 | | eqeq1 2740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑠 → (𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
↔ 𝑠 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿))) |
| 239 | 238 | 2rexbidv 3210 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑠 → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿))) |
| 240 | 237, 239 | elab 3663 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)) |
| 241 | | eqeq1 2740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑠 → (𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
↔ 𝑠 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅))) |
| 242 | 241 | 2rexbidv 3210 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑠 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅))) |
| 243 | 237, 242 | elab 3663 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)) |
| 244 | 240, 243 | orbi12i 914 |
. . . . . . . . . . . . 13
⊢ ((𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∨ 𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝑅 ∈
(𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})
↔ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿) ∨
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅))) |
| 245 | 236, 244 | bitri 275 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})
↔ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿) ∨
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅))) |
| 246 | 245 | orbi2i 912 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ (𝑅‘𝑗) ∨ 𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))
↔ (𝑠 ∈ (𝑅‘𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿) ∨
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)))) |
| 247 | 235, 246 | bitri 275 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ((𝑅‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))
↔ (𝑠 ∈ (𝑅‘𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿) ∨
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)))) |
| 248 | 234, 247 | bitrdi 287 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) ↔ (𝑠 ∈ (𝑅‘𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿) ∨
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅))))) |
| 249 | 22 | rspccv 3603 |
. . . . . . . . . . 11
⊢
(∀𝑐 ∈
(𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐) → (𝑠 ∈ (𝑅‘𝑗) → 1s <s (𝐴 ·s 𝑠))) |
| 250 | 185, 249 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘𝑗) → 1s <s (𝐴 ·s 𝑠))) |
| 251 | 119 | adantrl 716 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s 𝑦𝐿) <s 1s
) |
| 252 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝐴 ∈ No
) |
| 253 | 90 | adantrl 716 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑦𝐿 ∈ No ) |
| 254 | 252, 253 | mulscld 28095 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s 𝑦𝐿) ∈ No ) |
| 255 | 77 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 1s ∈ No ) |
| 256 | 182 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 -s 𝑥𝐿) ∈ No ) |
| 257 | 195 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 0s <s (𝐴 -s 𝑥𝐿)) |
| 258 | 254, 255,
256, 257 | sltmul2d 28132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 ·s 𝑦𝐿) <s 1s
↔ ((𝐴 -s
𝑥𝐿)
·s (𝐴
·s 𝑦𝐿)) <s ((𝐴 -s 𝑥𝐿)
·s 1s ))) |
| 259 | 251, 258 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 -s 𝑥𝐿) ·s
(𝐴 ·s
𝑦𝐿))
<s ((𝐴 -s
𝑥𝐿)
·s 1s )) |
| 260 | 256 | mulsridd 28074 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 -s 𝑥𝐿) ·s
1s ) = (𝐴
-s 𝑥𝐿)) |
| 261 | 259, 260 | breqtrd 5150 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 -s 𝑥𝐿) ·s
(𝐴 ·s
𝑦𝐿))
<s (𝐴 -s
𝑥𝐿)) |
| 262 | 155 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝑥𝐿 -s 𝐴) ∈
No ) |
| 263 | 262, 254 | mulnegs1d 28120 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (( -us ‘(𝑥𝐿
-s 𝐴))
·s (𝐴
·s 𝑦𝐿)) = ( -us
‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))) |
| 264 | 200 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → ((
-us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝐿)) = ((𝐴 -s 𝑥𝐿)
·s (𝐴
·s 𝑦𝐿))) |
| 265 | 264 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (( -us ‘(𝑥𝐿
-s 𝐴))
·s (𝐴
·s 𝑦𝐿)) = ((𝐴 -s 𝑥𝐿) ·s
(𝐴 ·s
𝑦𝐿))) |
| 266 | 263, 265 | eqtr3d 2773 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( -us ‘((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝐿))) = ((𝐴 -s 𝑥𝐿) ·s
(𝐴 ·s
𝑦𝐿))) |
| 267 | 200 | adantrr 717 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( -us ‘(𝑥𝐿
-s 𝐴)) = (𝐴 -s 𝑥𝐿)) |
| 268 | 261, 266,
267 | 3brtr4d 5156 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( -us ‘((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝐿))) <s ( -us
‘(𝑥𝐿 -s 𝐴))) |
| 269 | 262, 254 | mulscld 28095 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ∈
No ) |
| 270 | 262, 269 | sltnegd 28010 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ↔ (
-us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s (
-us ‘(𝑥𝐿 -s 𝐴)))) |
| 271 | 268, 270 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) |
| 272 | 153 | adantrr 717 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝐿 ∈ No ) |
| 273 | 272, 252,
269 | sltsubadd2d 28051 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ↔
𝑥𝐿 <s
(𝐴 +s ((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝐿))))) |
| 274 | 271, 273 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝐿 <s (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))) |
| 275 | 272 | mulslidd 28103 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( 1s
·s 𝑥𝐿) = 𝑥𝐿) |
| 276 | 262, 253 | mulscld 28095 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) ∈
No ) |
| 277 | 252, 255,
276 | addsdid 28116 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = ((𝐴 ·s
1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)))) |
| 278 | 252 | mulsridd 28074 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s 1s ) =
𝐴) |
| 279 | 252, 262,
253 | muls12d 28141 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) = ((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝐿))) |
| 280 | 278, 279 | oveq12d 7428 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 ·s 1s )
+s (𝐴
·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝐿)))) |
| 281 | 277, 280 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝐿)))) |
| 282 | 274, 275,
281 | 3brtr4d 5156 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( 1s
·s 𝑥𝐿) <s (𝐴 ·s (
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)))) |
| 283 | 255, 276 | addscld 27944 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( 1s +s
((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) ∈ No ) |
| 284 | 252, 283 | mulscld 28095 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) ∈
No ) |
| 285 | 167 | adantrr 717 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 0s <s 𝑥𝐿) |
| 286 | 179 | adantrr 717 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ∃𝑦 ∈ No
(𝑥𝐿
·s 𝑦) =
1s ) |
| 287 | 255, 284,
272, 285, 286 | sltmuldivwd 28161 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (( 1s
·s 𝑥𝐿) <s (𝐴 ·s (
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) ↔
1s <s ((𝐴
·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)))
/su 𝑥𝐿))) |
| 288 | 282, 287 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 1s <s ((𝐴 ·s (
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)))
/su 𝑥𝐿)) |
| 289 | 168 | adantrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝐿 ≠ 0s
) |
| 290 | 252, 283,
272, 289, 286 | divsasswd 28163 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)))
/su 𝑥𝐿) = (𝐴 ·s (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿))) |
| 291 | 288, 290 | breqtrd 5150 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 1s <s (𝐴 ·s ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿))) |
| 292 | | oveq2 7418 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿) → (𝐴 ·s 𝑠) = (𝐴 ·s (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿))) |
| 293 | 292 | breq2d 5136 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿) → ( 1s
<s (𝐴
·s 𝑠)
↔ 1s <s (𝐴 ·s (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿)))) |
| 294 | 291, 293 | syl5ibrcom 247 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
→ 1s <s (𝐴 ·s 𝑠))) |
| 295 | 294 | rexlimdvva 3202 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
→ 1s <s (𝐴 ·s 𝑠))) |
| 296 | 83 | adantrr 717 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑥𝑅 -s 𝐴) ∈
No ) |
| 297 | 296 | mulsridd 28074 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s
1s ) = (𝑥𝑅 -s 𝐴)) |
| 298 | 189 | adantrl 716 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 1s <s (𝐴 ·s 𝑦𝑅)) |
| 299 | 77 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 1s ∈ No ) |
| 300 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝐴 ∈ No
) |
| 301 | 159 | adantrl 716 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑦𝑅 ∈ No ) |
| 302 | 300, 301 | mulscld 28095 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s 𝑦𝑅) ∈ No ) |
| 303 | 123 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 0s <s (𝑥𝑅
-s 𝐴)) |
| 304 | 299, 302,
296, 303 | sltmul2d 28132 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( 1s <s (𝐴 ·s 𝑦𝑅) ↔
((𝑥𝑅
-s 𝐴)
·s 1s ) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))) |
| 305 | 298, 304 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s
1s ) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) |
| 306 | 297, 305 | eqbrtrrd 5148 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑥𝑅 -s 𝐴) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) |
| 307 | 81 | adantrr 717 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝑅 ∈ No ) |
| 308 | 296, 302 | mulscld 28095 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ∈
No ) |
| 309 | 307, 300,
308 | sltsubadd2d 28051 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝑅 -s 𝐴) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ↔
𝑥𝑅 <s
(𝐴 +s ((𝑥𝑅
-s 𝐴)
·s (𝐴
·s 𝑦𝑅))))) |
| 310 | 306, 309 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝑅 <s (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))) |
| 311 | 307 | mulslidd 28103 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( 1s
·s 𝑥𝑅) = 𝑥𝑅) |
| 312 | 296, 301 | mulscld 28095 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) ∈
No ) |
| 313 | 300, 299,
312 | addsdid 28116 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) =
((𝐴 ·s
1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)))) |
| 314 | 300 | mulsridd 28074 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s 1s ) =
𝐴) |
| 315 | 300, 296,
301 | muls12d 28141 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) = ((𝑥𝑅
-s 𝐴)
·s (𝐴
·s 𝑦𝑅))) |
| 316 | 314, 315 | oveq12d 7428 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝐴 ·s 1s )
+s (𝐴
·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝑅
-s 𝐴)
·s (𝐴
·s 𝑦𝑅)))) |
| 317 | 313, 316 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝑅
-s 𝐴)
·s (𝐴
·s 𝑦𝑅)))) |
| 318 | 310, 311,
317 | 3brtr4d 5156 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( 1s
·s 𝑥𝑅) <s (𝐴 ·s (
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)))) |
| 319 | 299, 312 | addscld 27944 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( 1s +s
((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) ∈ No ) |
| 320 | 300, 319 | mulscld 28095 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) ∈
No ) |
| 321 | 100 | adantrr 717 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 0s <s 𝑥𝑅) |
| 322 | 113 | adantrr 717 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ∃𝑦 ∈ No
(𝑥𝑅
·s 𝑦) =
1s ) |
| 323 | 299, 320,
307, 321, 322 | sltmuldivwd 28161 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (( 1s
·s 𝑥𝑅) <s (𝐴 ·s (
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) ↔
1s <s ((𝐴
·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)))
/su 𝑥𝑅))) |
| 324 | 318, 323 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 1s <s ((𝐴 ·s (
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)))
/su 𝑥𝑅)) |
| 325 | 101 | adantrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝑅 ≠ 0s
) |
| 326 | 300, 319,
307, 325, 322 | divsasswd 28163 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)))
/su 𝑥𝑅) = (𝐴 ·s (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅))) |
| 327 | 324, 326 | breqtrd 5150 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 1s <s (𝐴 ·s ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅))) |
| 328 | | oveq2 7418 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅) → (𝐴 ·s 𝑠) = (𝐴 ·s (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅))) |
| 329 | 328 | breq2d 5136 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅) → ( 1s
<s (𝐴
·s 𝑠)
↔ 1s <s (𝐴 ·s (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅)))) |
| 330 | 327, 329 | syl5ibrcom 247 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
→ 1s <s (𝐴 ·s 𝑠))) |
| 331 | 330 | rexlimdvva 3202 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
→ 1s <s (𝐴 ·s 𝑠))) |
| 332 | 295, 331 | jaod 859 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ((∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿) ∨
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅))
→ 1s <s (𝐴 ·s 𝑠))) |
| 333 | 250, 332 | jaod 859 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ((𝑠 ∈ (𝑅‘𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿) ∨
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)))
→ 1s <s (𝐴 ·s 𝑠))) |
| 334 | 248, 333 | sylbid 240 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) → 1s <s (𝐴 ·s 𝑠))) |
| 335 | 334 | ralrimiv 3132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)) |
| 336 | 231, 335 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))) |
| 337 | 336 | 3exp 1119 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ ω → ((∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐)) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))))) |
| 338 | 337 | com12 32 |
. . . 4
⊢ (𝑗 ∈ ω → (𝜑 → ((∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐)) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))))) |
| 339 | 338 | a2d 29 |
. . 3
⊢ (𝑗 ∈ ω → ((𝜑 → (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝜑 → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))))) |
| 340 | 6, 12, 26, 32, 54, 339 | finds 7897 |
. 2
⊢ (𝐼 ∈ ω → (𝜑 → (∀𝑏 ∈ (𝐿‘𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝐼) 1s <s (𝐴 ·s 𝑐)))) |
| 341 | 340 | impcom 407 |
1
⊢ ((𝜑 ∧ 𝐼 ∈ ω) → (∀𝑏 ∈ (𝐿‘𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝐼) 1s <s (𝐴 ·s 𝑐))) |