Step | Hyp | Ref
| Expression |
1 | | fveq2 6891 |
. . . . . 6
⊢ (𝑖 = ∅ → (𝐿‘𝑖) = (𝐿‘∅)) |
2 | 1 | raleqdv 3324 |
. . . . 5
⊢ (𝑖 = ∅ → (∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s )) |
3 | | fveq2 6891 |
. . . . . 6
⊢ (𝑖 = ∅ → (𝑅‘𝑖) = (𝑅‘∅)) |
4 | 3 | raleqdv 3324 |
. . . . 5
⊢ (𝑖 = ∅ → (∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐))) |
5 | 2, 4 | anbi12d 630 |
. . . 4
⊢ (𝑖 = ∅ →
((∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐)))) |
6 | 5 | imbi2d 340 |
. . 3
⊢ (𝑖 = ∅ → ((𝜑 → (∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐))))) |
7 | | fveq2 6891 |
. . . . . 6
⊢ (𝑖 = 𝑗 → (𝐿‘𝑖) = (𝐿‘𝑗)) |
8 | 7 | raleqdv 3324 |
. . . . 5
⊢ (𝑖 = 𝑗 → (∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s )) |
9 | | fveq2 6891 |
. . . . . 6
⊢ (𝑖 = 𝑗 → (𝑅‘𝑖) = (𝑅‘𝑗)) |
10 | 9 | raleqdv 3324 |
. . . . 5
⊢ (𝑖 = 𝑗 → (∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) |
11 | 8, 10 | anbi12d 630 |
. . . 4
⊢ (𝑖 = 𝑗 → ((∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐)))) |
12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑖 = 𝑗 → ((𝜑 → (∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))))) |
13 | | fveq2 6891 |
. . . . . . 7
⊢ (𝑖 = suc 𝑗 → (𝐿‘𝑖) = (𝐿‘suc 𝑗)) |
14 | 13 | raleqdv 3324 |
. . . . . 6
⊢ (𝑖 = suc 𝑗 → (∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s )) |
15 | | fveq2 6891 |
. . . . . . 7
⊢ (𝑖 = suc 𝑗 → (𝑅‘𝑖) = (𝑅‘suc 𝑗)) |
16 | 15 | raleqdv 3324 |
. . . . . 6
⊢ (𝑖 = suc 𝑗 → (∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐))) |
17 | 14, 16 | anbi12d 630 |
. . . . 5
⊢ (𝑖 = suc 𝑗 → ((∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐)))) |
18 | | oveq2 7420 |
. . . . . . . 8
⊢ (𝑏 = 𝑟 → (𝐴 ·s 𝑏) = (𝐴 ·s 𝑟)) |
19 | 18 | breq1d 5158 |
. . . . . . 7
⊢ (𝑏 = 𝑟 → ((𝐴 ·s 𝑏) <s 1s ↔ (𝐴 ·s 𝑟) <s 1s
)) |
20 | 19 | cbvralvw 3233 |
. . . . . 6
⊢
(∀𝑏 ∈
(𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ) |
21 | | oveq2 7420 |
. . . . . . . 8
⊢ (𝑐 = 𝑠 → (𝐴 ·s 𝑐) = (𝐴 ·s 𝑠)) |
22 | 21 | breq2d 5160 |
. . . . . . 7
⊢ (𝑐 = 𝑠 → ( 1s <s (𝐴 ·s 𝑐) ↔ 1s <s
(𝐴 ·s
𝑠))) |
23 | 22 | cbvralvw 3233 |
. . . . . 6
⊢
(∀𝑐 ∈
(𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)) |
24 | 20, 23 | anbi12i 626 |
. . . . 5
⊢
((∀𝑏 ∈
(𝐿‘suc 𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))) |
25 | 17, 24 | bitrdi 287 |
. . . 4
⊢ (𝑖 = suc 𝑗 → ((∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)))) |
26 | 25 | imbi2d 340 |
. . 3
⊢ (𝑖 = suc 𝑗 → ((𝜑 → (∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))))) |
27 | | fveq2 6891 |
. . . . . 6
⊢ (𝑖 = 𝐼 → (𝐿‘𝑖) = (𝐿‘𝐼)) |
28 | 27 | raleqdv 3324 |
. . . . 5
⊢ (𝑖 = 𝐼 → (∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ↔ ∀𝑏 ∈ (𝐿‘𝐼)(𝐴 ·s 𝑏) <s 1s )) |
29 | | fveq2 6891 |
. . . . . 6
⊢ (𝑖 = 𝐼 → (𝑅‘𝑖) = (𝑅‘𝐼)) |
30 | 29 | raleqdv 3324 |
. . . . 5
⊢ (𝑖 = 𝐼 → (∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐) ↔ ∀𝑐 ∈ (𝑅‘𝐼) 1s <s (𝐴 ·s 𝑐))) |
31 | 28, 30 | anbi12d 630 |
. . . 4
⊢ (𝑖 = 𝐼 → ((∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐)) ↔ (∀𝑏 ∈ (𝐿‘𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝐼) 1s <s (𝐴 ·s 𝑐)))) |
32 | 31 | imbi2d 340 |
. . 3
⊢ (𝑖 = 𝐼 → ((𝜑 → (∀𝑏 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐))) ↔ (𝜑 → (∀𝑏 ∈ (𝐿‘𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝐼) 1s <s (𝐴 ·s 𝑐))))) |
33 | | precsexlem.4 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ No
) |
34 | | muls01 27808 |
. . . . . . 7
⊢ (𝐴 ∈
No → (𝐴
·s 0s ) = 0s ) |
35 | 33, 34 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐴 ·s 0s ) =
0s ) |
36 | | 0slt1s 27568 |
. . . . . 6
⊢
0s <s 1s |
37 | 35, 36 | eqbrtrdi 5187 |
. . . . 5
⊢ (𝜑 → (𝐴 ·s 0s ) <s
1s ) |
38 | | precsexlem.1 |
. . . . . . . 8
⊢ 𝐹 = rec((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉) |
39 | | precsexlem.2 |
. . . . . . . 8
⊢ 𝐿 = (1st ∘ 𝐹) |
40 | | precsexlem.3 |
. . . . . . . 8
⊢ 𝑅 = (2nd ∘ 𝐹) |
41 | 38, 39, 40 | precsexlem1 27893 |
. . . . . . 7
⊢ (𝐿‘∅) = {
0s } |
42 | 41 | raleqi 3322 |
. . . . . 6
⊢
(∀𝑏 ∈
(𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ↔
∀𝑏 ∈ {
0s } (𝐴
·s 𝑏)
<s 1s ) |
43 | | 0sno 27565 |
. . . . . . . 8
⊢
0s ∈ No |
44 | 43 | elexi 3493 |
. . . . . . 7
⊢
0s ∈ V |
45 | | oveq2 7420 |
. . . . . . . 8
⊢ (𝑏 = 0s → (𝐴 ·s 𝑏) = (𝐴 ·s 0s
)) |
46 | 45 | breq1d 5158 |
. . . . . . 7
⊢ (𝑏 = 0s → ((𝐴 ·s 𝑏) <s 1s ↔
(𝐴 ·s
0s ) <s 1s )) |
47 | 44, 46 | ralsn 4685 |
. . . . . 6
⊢
(∀𝑏 ∈ {
0s } (𝐴
·s 𝑏)
<s 1s ↔ (𝐴 ·s 0s ) <s
1s ) |
48 | 42, 47 | bitri 275 |
. . . . 5
⊢
(∀𝑏 ∈
(𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ↔
(𝐴 ·s
0s ) <s 1s ) |
49 | 37, 48 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ) |
50 | | ral0 4512 |
. . . . 5
⊢
∀𝑐 ∈
∅ 1s <s (𝐴 ·s 𝑐) |
51 | 38, 39, 40 | precsexlem2 27894 |
. . . . . 6
⊢ (𝑅‘∅) =
∅ |
52 | 51 | raleqi 3322 |
. . . . 5
⊢
(∀𝑐 ∈
(𝑅‘∅)
1s <s (𝐴
·s 𝑐)
↔ ∀𝑐 ∈
∅ 1s <s (𝐴 ·s 𝑐)) |
53 | 50, 52 | mpbir 230 |
. . . 4
⊢
∀𝑐 ∈
(𝑅‘∅)
1s <s (𝐴
·s 𝑐) |
54 | 49, 53 | jctir 520 |
. . 3
⊢ (𝜑 → (∀𝑏 ∈ (𝐿‘∅)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘∅) 1s <s (𝐴 ·s 𝑐))) |
55 | 38, 39, 40 | precsexlem4 27896 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ω → (𝐿‘suc 𝑗) = ((𝐿‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
56 | 55 | 3ad2ant2 1133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝐿‘suc 𝑗) = ((𝐿‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
57 | 56 | eleq2d 2818 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) ↔ 𝑟 ∈ ((𝐿‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})))) |
58 | | elun 4148 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ ((𝐿‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))
↔ (𝑟 ∈ (𝐿‘𝑗) ∨ 𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
59 | | elun 4148 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})
↔ (𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝐿 ∈
(𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∨ 𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})) |
60 | | vex 3477 |
. . . . . . . . . . . . . . 15
⊢ 𝑟 ∈ V |
61 | | eqeq1 2735 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑟 → (𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)
↔ 𝑟 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅))) |
62 | 61 | 2rexbidv 3218 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑟 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅))) |
63 | 60, 62 | elab 3668 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)) |
64 | | eqeq1 2735 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑟 → (𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
↔ 𝑟 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿))) |
65 | 64 | 2rexbidv 3218 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑟 → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿))) |
66 | 60, 65 | elab 3668 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)) |
67 | 63, 66 | orbi12i 912 |
. . . . . . . . . . . . 13
⊢ ((𝑟 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∨ 𝑟 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})
↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅) ∨
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿))) |
68 | 59, 67 | bitri 275 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})
↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅) ∨
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿))) |
69 | 68 | orbi2i 910 |
. . . . . . . . . . 11
⊢ ((𝑟 ∈ (𝐿‘𝑗) ∨ 𝑟 ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))
↔ (𝑟 ∈ (𝐿‘𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅) ∨
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)))) |
70 | 58, 69 | bitri 275 |
. . . . . . . . . 10
⊢ (𝑟 ∈ ((𝐿‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))
↔ (𝑟 ∈ (𝐿‘𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅) ∨
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)))) |
71 | 57, 70 | bitrdi 287 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) ↔ (𝑟 ∈ (𝐿‘𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅) ∨
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿))))) |
72 | | simp3l 1200 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ) |
73 | 19 | rspccv 3609 |
. . . . . . . . . . 11
⊢
(∀𝑏 ∈
(𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s → (𝑟 ∈ (𝐿‘𝑗) → (𝐴 ·s 𝑟) <s 1s )) |
74 | 72, 73 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘𝑗) → (𝐴 ·s 𝑟) <s 1s )) |
75 | 33 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → 𝐴 ∈ No
) |
76 | 75 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝐴 ∈ No
) |
77 | | 1sno 27566 |
. . . . . . . . . . . . . . . . 17
⊢
1s ∈ No |
78 | 77 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 1s ∈ No ) |
79 | | rightssno 27614 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ( R
‘𝐴) ⊆ No |
80 | 79 | sseli 3978 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥𝑅 ∈ ( R
‘𝐴) → 𝑥𝑅 ∈
No ) |
81 | 80 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ∈ No ) |
82 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝐴 ∈ No
) |
83 | 81, 82 | subscld 27775 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → (𝑥𝑅 -s 𝐴) ∈
No ) |
84 | 83 | adantrr 714 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝑥𝑅 -s 𝐴) ∈
No ) |
85 | | precsexlem.5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 0s <s 𝐴) |
86 | | precsexlem.6 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s
)) |
87 | 38, 39, 40, 33, 85, 86 | precsexlem8 27900 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) |
88 | 87 | simpld 494 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝐿‘𝑗) ⊆ No
) |
89 | 88 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝐿‘𝑗) ⊆ No
) |
90 | 89 | sselda 3982 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗)) → 𝑦𝐿 ∈ No ) |
91 | 90 | adantrl 713 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑦𝐿 ∈ No ) |
92 | 84, 91 | mulscld 27831 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) ∈
No ) |
93 | 78, 92 | addscld 27703 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( 1s +s
((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) ∈ No ) |
94 | 81 | adantrr 714 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝑅 ∈ No ) |
95 | 43 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s ∈
No ) |
96 | 85 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → 0s <s 𝐴) |
97 | 96 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s
𝐴) |
98 | | breq2 5152 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥𝑂 = 𝑥𝑅 →
(𝐴 <s 𝑥𝑂 ↔ 𝐴 <s 𝑥𝑅)) |
99 | | rightval 27597 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ( R
‘𝐴) = {𝑥𝑂 ∈ ( O
‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥𝑂} |
100 | 98, 99 | elrab2 3686 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥𝑅 ∈ ( R
‘𝐴) ↔ (𝑥𝑅 ∈ ( O
‘( bday ‘𝐴)) ∧ 𝐴 <s 𝑥𝑅)) |
101 | 100 | simprbi 496 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑅 ∈ ( R
‘𝐴) → 𝐴 <s 𝑥𝑅) |
102 | 101 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑥𝑅) |
103 | 95, 82, 81, 97, 102 | slttrd 27499 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s
𝑥𝑅) |
104 | 103 | sgt0ne0d 27574 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ≠ 0s
) |
105 | 104 | adantrr 714 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝑅 ≠ 0s
) |
106 | | breq2 5152 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝑅 → (
0s <s 𝑥𝑂 ↔ 0s
<s 𝑥𝑅)) |
107 | | oveq1 7419 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥𝑂 = 𝑥𝑅 →
(𝑥𝑂
·s 𝑦) =
(𝑥𝑅
·s 𝑦)) |
108 | 107 | eqeq1d 2733 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥𝑂 = 𝑥𝑅 →
((𝑥𝑂
·s 𝑦) =
1s ↔ (𝑥𝑅 ·s
𝑦) = 1s
)) |
109 | 108 | rexbidv 3177 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝑅 →
(∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s ↔
∃𝑦 ∈ No (𝑥𝑅 ·s
𝑦) = 1s
)) |
110 | 106, 109 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑂 = 𝑥𝑅 → ((
0s <s 𝑥𝑂 → ∃𝑦 ∈
No (𝑥𝑂 ·s
𝑦) = 1s ) ↔
( 0s <s 𝑥𝑅 → ∃𝑦 ∈
No (𝑥𝑅 ·s
𝑦) = 1s
))) |
111 | 86 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s
)) |
112 | 111 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ∀𝑥𝑂 ∈ (( L
‘𝐴) ∪ ( R
‘𝐴))( 0s
<s 𝑥𝑂
→ ∃𝑦 ∈
No (𝑥𝑂 ·s
𝑦) = 1s
)) |
113 | | elun2 4177 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑅 ∈ ( R
‘𝐴) → 𝑥𝑅 ∈ (( L
‘𝐴) ∪ ( R
‘𝐴))) |
114 | 113 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) |
115 | 110, 112,
114 | rspcdva 3613 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ( 0s <s
𝑥𝑅
→ ∃𝑦 ∈
No (𝑥𝑅 ·s
𝑦) = 1s
)) |
116 | 103, 115 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → ∃𝑦 ∈
No (𝑥𝑅 ·s
𝑦) = 1s
) |
117 | 116 | adantrr 714 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ∃𝑦 ∈ No
(𝑥𝑅
·s 𝑦) =
1s ) |
118 | 76, 93, 94, 105, 117 | divsasswd 27890 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)))
/su 𝑥𝑅) = (𝐴 ·s (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅))) |
119 | | oveq2 7420 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 = 𝑦𝐿 → (𝐴 ·s 𝑏) = (𝐴 ·s 𝑦𝐿)) |
120 | 119 | breq1d 5158 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = 𝑦𝐿 → ((𝐴 ·s 𝑏) <s 1s ↔
(𝐴 ·s
𝑦𝐿) <s
1s )) |
121 | 120 | rspccva 3611 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((∀𝑏 ∈
(𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ 𝑦𝐿 ∈
(𝐿‘𝑗)) → (𝐴 ·s 𝑦𝐿) <s 1s
) |
122 | 72, 121 | sylan 579 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗)) → (𝐴 ·s 𝑦𝐿) <s 1s
) |
123 | 122 | adantrl 713 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s 𝑦𝐿) <s 1s
) |
124 | 76, 91 | mulscld 27831 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s 𝑦𝐿) ∈ No ) |
125 | 82, 81 | posdifsd 27801 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → (𝐴 <s 𝑥𝑅 ↔ 0s
<s (𝑥𝑅 -s 𝐴))) |
126 | 102, 125 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝑅 ∈ ( R ‘𝐴)) → 0s <s
(𝑥𝑅
-s 𝐴)) |
127 | 126 | adantrr 714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 0s <s (𝑥𝑅
-s 𝐴)) |
128 | 124, 78, 84, 127 | sltmul2d 27864 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 ·s 𝑦𝐿) <s 1s
↔ ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s
((𝑥𝑅
-s 𝐴)
·s 1s ))) |
129 | 123, 128 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s
((𝑥𝑅
-s 𝐴)
·s 1s )) |
130 | 84 | mulsridd 27810 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s
1s ) = (𝑥𝑅 -s 𝐴)) |
131 | 129, 130 | breqtrd 5174 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s
(𝑥𝑅
-s 𝐴)) |
132 | 84, 124 | mulscld 27831 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ∈
No ) |
133 | 76, 132, 94 | sltaddsub2d 27799 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s
𝑥𝑅
↔ ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) <s
(𝑥𝑅
-s 𝐴))) |
134 | 131, 133 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s
𝑥𝑅) |
135 | 76, 78, 92 | addsdid 27851 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = ((𝐴 ·s
1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)))) |
136 | 76 | mulsridd 27810 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s 1s ) =
𝐴) |
137 | 76, 84, 91 | muls12d 27873 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) = ((𝑥𝑅
-s 𝐴)
·s (𝐴
·s 𝑦𝐿))) |
138 | 136, 137 | oveq12d 7430 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 ·s 1s )
+s (𝐴
·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝑅
-s 𝐴)
·s (𝐴
·s 𝑦𝐿)))) |
139 | 135, 138 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝑅
-s 𝐴)
·s (𝐴
·s 𝑦𝐿)))) |
140 | 94 | mulslidd 27839 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( 1s
·s 𝑥𝑅) = 𝑥𝑅) |
141 | 134, 139,
140 | 3brtr4d 5180 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) <s (
1s ·s 𝑥𝑅)) |
142 | 76, 93 | mulscld 27831 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) ∈
No ) |
143 | 103 | adantrr 714 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 0s <s 𝑥𝑅) |
144 | 142, 78, 94, 143, 117 | sltdivmul2wd 27887 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (((𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)))
/su 𝑥𝑅) <s 1s
↔ (𝐴
·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))) <s (
1s ·s 𝑥𝑅))) |
145 | 141, 144 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)))
/su 𝑥𝑅) <s 1s
) |
146 | 118, 145 | eqbrtrrd 5172 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅)) <s 1s
) |
147 | | oveq2 7420 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅) → (𝐴 ·s 𝑟) = (𝐴 ·s (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅))) |
148 | 147 | breq1d 5158 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅) → ((𝐴 ·s 𝑟) <s 1s ↔
(𝐴 ·s ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅)) <s 1s
)) |
149 | 146, 148 | syl5ibrcom 246 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)
→ (𝐴
·s 𝑟)
<s 1s )) |
150 | 149 | rexlimdvva 3210 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)
→ (𝐴
·s 𝑟)
<s 1s )) |
151 | 75 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝐴 ∈ No
) |
152 | 77 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 1s ∈ No ) |
153 | | leftssno 27613 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( L
‘𝐴) ⊆ No |
154 | | elrabi 3677 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} → 𝑥𝐿 ∈ ( L
‘𝐴)) |
155 | 154 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → 𝑥𝐿 ∈ ( L
‘𝐴)) |
156 | 153, 155 | sselid 3980 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → 𝑥𝐿 ∈
No ) |
157 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → 𝐴 ∈
No ) |
158 | 156, 157 | subscld 27775 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → (𝑥𝐿
-s 𝐴) ∈
No ) |
159 | 158 | adantrr 714 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑥𝐿 -s 𝐴) ∈
No ) |
160 | 87 | simprd 495 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝑅‘𝑗) ⊆ No
) |
161 | 160 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑅‘𝑗) ⊆ No
) |
162 | 161 | sselda 3982 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗)) → 𝑦𝑅 ∈ No ) |
163 | 162 | adantrl 713 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑦𝑅 ∈ No ) |
164 | 159, 163 | mulscld 27831 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) ∈
No ) |
165 | 152, 164 | addscld 27703 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( 1s +s
((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) ∈ No ) |
166 | 156 | adantrr 714 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝐿 ∈ No ) |
167 | | breq2 5152 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑥𝐿 → ( 0s
<s 𝑥 ↔
0s <s 𝑥𝐿)) |
168 | 167 | elrab 3683 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ↔ (𝑥𝐿 ∈ ( L
‘𝐴) ∧
0s <s 𝑥𝐿)) |
169 | 168 | simprbi 496 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} → 0s
<s 𝑥𝐿) |
170 | 169 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → 0s
<s 𝑥𝐿) |
171 | 170 | sgt0ne0d 27574 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → 𝑥𝐿 ≠
0s ) |
172 | 171 | adantrr 714 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝐿 ≠ 0s
) |
173 | | breq2 5152 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝐿 → (
0s <s 𝑥𝑂 ↔ 0s
<s 𝑥𝐿)) |
174 | | oveq1 7419 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥𝑂 = 𝑥𝐿 →
(𝑥𝑂
·s 𝑦) =
(𝑥𝐿
·s 𝑦)) |
175 | 174 | eqeq1d 2733 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥𝑂 = 𝑥𝐿 →
((𝑥𝑂
·s 𝑦) =
1s ↔ (𝑥𝐿 ·s
𝑦) = 1s
)) |
176 | 175 | rexbidv 3177 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝐿 →
(∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s ↔
∃𝑦 ∈ No (𝑥𝐿 ·s
𝑦) = 1s
)) |
177 | 173, 176 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑂 = 𝑥𝐿 → ((
0s <s 𝑥𝑂 → ∃𝑦 ∈
No (𝑥𝑂 ·s
𝑦) = 1s ) ↔
( 0s <s 𝑥𝐿 → ∃𝑦 ∈
No (𝑥𝐿 ·s
𝑦) = 1s
))) |
178 | 111 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → ∀𝑥𝑂 ∈ (( L
‘𝐴) ∪ ( R
‘𝐴))( 0s
<s 𝑥𝑂
→ ∃𝑦 ∈
No (𝑥𝑂 ·s
𝑦) = 1s
)) |
179 | | elun1 4176 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝐿 ∈ ( L
‘𝐴) → 𝑥𝐿 ∈ (( L
‘𝐴) ∪ ( R
‘𝐴))) |
180 | 155, 179 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → 𝑥𝐿 ∈ (( L
‘𝐴) ∪ ( R
‘𝐴))) |
181 | 177, 178,
180 | rspcdva 3613 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → ( 0s
<s 𝑥𝐿
→ ∃𝑦 ∈
No (𝑥𝐿 ·s
𝑦) = 1s
)) |
182 | 170, 181 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → ∃𝑦 ∈
No (𝑥𝐿 ·s
𝑦) = 1s
) |
183 | 182 | adantrr 714 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ∃𝑦 ∈ No
(𝑥𝐿
·s 𝑦) =
1s ) |
184 | 151, 165,
166, 172, 183 | divsasswd 27890 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)))
/su 𝑥𝐿) = (𝐴 ·s (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿))) |
185 | 157, 156 | subscld 27775 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → (𝐴 -s 𝑥𝐿) ∈
No ) |
186 | 185 | adantrr 714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 -s 𝑥𝐿) ∈ No ) |
187 | 186 | mulsridd 27810 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝐴 -s 𝑥𝐿) ·s
1s ) = (𝐴
-s 𝑥𝐿)) |
188 | | simp3r 1201 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐)) |
189 | | oveq2 7420 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑐 = 𝑦𝑅 → (𝐴 ·s 𝑐) = (𝐴 ·s 𝑦𝑅)) |
190 | 189 | breq2d 5160 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 = 𝑦𝑅 → ( 1s
<s (𝐴
·s 𝑐)
↔ 1s <s (𝐴 ·s 𝑦𝑅))) |
191 | 190 | rspccva 3611 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((∀𝑐 ∈
(𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗)) → 1s <s (𝐴 ·s 𝑦𝑅)) |
192 | 188, 191 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗)) → 1s <s (𝐴 ·s 𝑦𝑅)) |
193 | 192 | adantrl 713 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 1s <s (𝐴 ·s 𝑦𝑅)) |
194 | 151, 163 | mulscld 27831 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s 𝑦𝑅) ∈ No ) |
195 | | breq1 5151 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥𝑂 = 𝑥𝐿 →
(𝑥𝑂
<s 𝐴 ↔ 𝑥𝐿 <s 𝐴)) |
196 | | leftval 27596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ( L
‘𝐴) = {𝑥𝑂 ∈ ( O
‘( bday ‘𝐴)) ∣ 𝑥𝑂 <s 𝐴} |
197 | 195, 196 | elrab2 3686 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥𝐿 ∈ ( L
‘𝐴) ↔ (𝑥𝐿 ∈ ( O
‘( bday ‘𝐴)) ∧ 𝑥𝐿 <s 𝐴)) |
198 | 197 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥𝐿 ∈ ( L
‘𝐴) → 𝑥𝐿 <s 𝐴) |
199 | 155, 198 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → 𝑥𝐿 <s 𝐴) |
200 | 156, 157 | posdifsd 27801 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → (𝑥𝐿 <s 𝐴 ↔ 0s <s
(𝐴 -s 𝑥𝐿))) |
201 | 199, 200 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → 0s
<s (𝐴 -s
𝑥𝐿)) |
202 | 201 | adantrr 714 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 0s <s (𝐴 -s 𝑥𝐿)) |
203 | 152, 194,
186, 202 | sltmul2d 27864 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( 1s <s (𝐴 ·s 𝑦𝑅) ↔
((𝐴 -s 𝑥𝐿)
·s 1s ) <s ((𝐴 -s 𝑥𝐿) ·s
(𝐴 ·s
𝑦𝑅)))) |
204 | 193, 203 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝐴 -s 𝑥𝐿) ·s
1s ) <s ((𝐴
-s 𝑥𝐿) ·s
(𝐴 ·s
𝑦𝑅))) |
205 | 187, 204 | eqbrtrrd 5172 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 -s 𝑥𝐿) <s ((𝐴 -s 𝑥𝐿)
·s (𝐴
·s 𝑦𝑅))) |
206 | 156, 157 | negsubsdi2d 27787 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → ( -us
‘(𝑥𝐿 -s 𝐴)) = (𝐴 -s 𝑥𝐿)) |
207 | 206 | adantrr 714 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( -us ‘(𝑥𝐿
-s 𝐴)) = (𝐴 -s 𝑥𝐿)) |
208 | 159, 194 | mulnegs1d 27855 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (( -us ‘(𝑥𝐿
-s 𝐴))
·s (𝐴
·s 𝑦𝑅)) = ( -us
‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))) |
209 | 206 | oveq1d 7427 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → ((
-us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝑅)) = ((𝐴 -s 𝑥𝐿)
·s (𝐴
·s 𝑦𝑅))) |
210 | 209 | adantrr 714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (( -us ‘(𝑥𝐿
-s 𝐴))
·s (𝐴
·s 𝑦𝑅)) = ((𝐴 -s 𝑥𝐿) ·s
(𝐴 ·s
𝑦𝑅))) |
211 | 208, 210 | eqtr3d 2773 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( -us ‘((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝑅))) = ((𝐴 -s 𝑥𝐿) ·s
(𝐴 ·s
𝑦𝑅))) |
212 | 205, 207,
211 | 3brtr4d 5180 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( -us ‘(𝑥𝐿
-s 𝐴)) <s (
-us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))) |
213 | 159, 194 | mulscld 27831 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ∈
No ) |
214 | 213, 159 | sltnegd 27761 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s
(𝑥𝐿
-s 𝐴) ↔ (
-us ‘(𝑥𝐿 -s 𝐴)) <s ( -us
‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))))) |
215 | 212, 214 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s
(𝑥𝐿
-s 𝐴)) |
216 | 151, 213,
166 | sltaddsub2d 27799 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) <s
𝑥𝐿
↔ ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) <s
(𝑥𝐿
-s 𝐴))) |
217 | 215, 216 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) <s
𝑥𝐿) |
218 | 151, 152,
164 | addsdid 27851 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) =
((𝐴 ·s
1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)))) |
219 | 151 | mulsridd 27810 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s 1s ) =
𝐴) |
220 | 151, 159,
163 | muls12d 27873 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) = ((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝑅))) |
221 | 219, 220 | oveq12d 7430 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝐴 ·s 1s )
+s (𝐴
·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝑅)))) |
222 | 218, 221 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝑅)))) |
223 | 166 | mulsridd 27810 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑥𝐿 ·s
1s ) = 𝑥𝐿) |
224 | 217, 222,
223 | 3brtr4d 5180 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) <s
(𝑥𝐿
·s 1s )) |
225 | 151, 165 | mulscld 27831 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) ∈
No ) |
226 | 170 | adantrr 714 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 0s <s 𝑥𝐿) |
227 | 225, 152,
166, 226, 183 | sltdivmulwd 27886 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (((𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)))
/su 𝑥𝐿) <s 1s
↔ (𝐴
·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))) <s
(𝑥𝐿
·s 1s ))) |
228 | 224, 227 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)))
/su 𝑥𝐿) <s 1s
) |
229 | 184, 228 | eqbrtrrd 5172 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿)) <s 1s
) |
230 | | oveq2 7420 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿) → (𝐴 ·s 𝑟) = (𝐴 ·s (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿))) |
231 | 230 | breq1d 5158 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿) → ((𝐴 ·s 𝑟) <s 1s ↔
(𝐴 ·s ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿)) <s 1s
)) |
232 | 229, 231 | syl5ibrcom 246 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
→ (𝐴
·s 𝑟)
<s 1s )) |
233 | 232 | rexlimdvva 3210 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
→ (𝐴
·s 𝑟)
<s 1s )) |
234 | 150, 233 | jaod 856 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ((∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅) ∨
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿))
→ (𝐴
·s 𝑟)
<s 1s )) |
235 | 74, 234 | jaod 856 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ((𝑟 ∈ (𝐿‘𝑗) ∨ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑟 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅) ∨
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑟 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)))
→ (𝐴
·s 𝑟)
<s 1s )) |
236 | 71, 235 | sylbid 239 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑟 ∈ (𝐿‘suc 𝑗) → (𝐴 ·s 𝑟) <s 1s )) |
237 | 236 | ralrimiv 3144 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ) |
238 | 38, 39, 40 | precsexlem5 27897 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ω → (𝑅‘suc 𝑗) = ((𝑅‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
239 | 238 | 3ad2ant2 1133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑅‘suc 𝑗) = ((𝑅‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
240 | 239 | eleq2d 2818 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) ↔ 𝑠 ∈ ((𝑅‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})))) |
241 | | elun 4148 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ((𝑅‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))
↔ (𝑠 ∈ (𝑅‘𝑗) ∨ 𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
242 | | elun 4148 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})
↔ (𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∨ 𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝑅 ∈
(𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})) |
243 | | vex 3477 |
. . . . . . . . . . . . . . 15
⊢ 𝑠 ∈ V |
244 | | eqeq1 2735 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑠 → (𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
↔ 𝑠 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿))) |
245 | 244 | 2rexbidv 3218 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑠 → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿))) |
246 | 243, 245 | elab 3668 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)) |
247 | | eqeq1 2735 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑠 → (𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
↔ 𝑠 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅))) |
248 | 247 | 2rexbidv 3218 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑠 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅))) |
249 | 243, 248 | elab 3668 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)) |
250 | 246, 249 | orbi12i 912 |
. . . . . . . . . . . . 13
⊢ ((𝑠 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∨ 𝑠 ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝑅 ∈
(𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})
↔ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿) ∨
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅))) |
251 | 242, 250 | bitri 275 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})
↔ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿) ∨
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅))) |
252 | 251 | orbi2i 910 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ (𝑅‘𝑗) ∨ 𝑠 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))
↔ (𝑠 ∈ (𝑅‘𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿) ∨
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)))) |
253 | 241, 252 | bitri 275 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ((𝑅‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))
↔ (𝑠 ∈ (𝑅‘𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿) ∨
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)))) |
254 | 240, 253 | bitrdi 287 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) ↔ (𝑠 ∈ (𝑅‘𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿) ∨
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅))))) |
255 | 22 | rspccv 3609 |
. . . . . . . . . . 11
⊢
(∀𝑐 ∈
(𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐) → (𝑠 ∈ (𝑅‘𝑗) → 1s <s (𝐴 ·s 𝑠))) |
256 | 188, 255 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘𝑗) → 1s <s (𝐴 ·s 𝑠))) |
257 | 122 | adantrl 713 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s 𝑦𝐿) <s 1s
) |
258 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝐴 ∈ No
) |
259 | 90 | adantrl 713 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑦𝐿 ∈ No ) |
260 | 258, 259 | mulscld 27831 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s 𝑦𝐿) ∈ No ) |
261 | 77 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 1s ∈ No ) |
262 | 185 | adantrr 714 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 -s 𝑥𝐿) ∈ No ) |
263 | 201 | adantrr 714 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 0s <s (𝐴 -s 𝑥𝐿)) |
264 | 260, 261,
262, 263 | sltmul2d 27864 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 ·s 𝑦𝐿) <s 1s
↔ ((𝐴 -s
𝑥𝐿)
·s (𝐴
·s 𝑦𝐿)) <s ((𝐴 -s 𝑥𝐿)
·s 1s ))) |
265 | 257, 264 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 -s 𝑥𝐿) ·s
(𝐴 ·s
𝑦𝐿))
<s ((𝐴 -s
𝑥𝐿)
·s 1s )) |
266 | 262 | mulsridd 27810 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 -s 𝑥𝐿) ·s
1s ) = (𝐴
-s 𝑥𝐿)) |
267 | 265, 266 | breqtrd 5174 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 -s 𝑥𝐿) ·s
(𝐴 ·s
𝑦𝐿))
<s (𝐴 -s
𝑥𝐿)) |
268 | 158 | adantrr 714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝑥𝐿 -s 𝐴) ∈
No ) |
269 | 268, 260 | mulnegs1d 27855 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (( -us ‘(𝑥𝐿
-s 𝐴))
·s (𝐴
·s 𝑦𝐿)) = ( -us
‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))) |
270 | 206 | oveq1d 7427 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → ((
-us ‘(𝑥𝐿 -s 𝐴)) ·s (𝐴 ·s 𝑦𝐿)) = ((𝐴 -s 𝑥𝐿)
·s (𝐴
·s 𝑦𝐿))) |
271 | 270 | adantrr 714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (( -us ‘(𝑥𝐿
-s 𝐴))
·s (𝐴
·s 𝑦𝐿)) = ((𝐴 -s 𝑥𝐿) ·s
(𝐴 ·s
𝑦𝐿))) |
272 | 269, 271 | eqtr3d 2773 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( -us ‘((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝐿))) = ((𝐴 -s 𝑥𝐿) ·s
(𝐴 ·s
𝑦𝐿))) |
273 | 206 | adantrr 714 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( -us ‘(𝑥𝐿
-s 𝐴)) = (𝐴 -s 𝑥𝐿)) |
274 | 267, 272,
273 | 3brtr4d 5180 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( -us ‘((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝐿))) <s ( -us
‘(𝑥𝐿 -s 𝐴))) |
275 | 268, 260 | mulscld 27831 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ∈
No ) |
276 | 268, 275 | sltnegd 27761 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ↔ (
-us ‘((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) <s (
-us ‘(𝑥𝐿 -s 𝐴)))) |
277 | 274, 276 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿))) |
278 | 156 | adantrr 714 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝐿 ∈ No ) |
279 | 278, 258,
275 | sltsubadd2d 27797 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝐿 -s 𝐴) <s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)) ↔
𝑥𝐿 <s
(𝐴 +s ((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝐿))))) |
280 | 277, 279 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝐿 <s (𝐴 +s ((𝑥𝐿 -s 𝐴) ·s (𝐴 ·s 𝑦𝐿)))) |
281 | 278 | mulslidd 27839 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( 1s
·s 𝑥𝐿) = 𝑥𝐿) |
282 | 268, 259 | mulscld 27831 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) ∈
No ) |
283 | 258, 261,
282 | addsdid 27851 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = ((𝐴 ·s
1s ) +s (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)))) |
284 | 258 | mulsridd 27810 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s 1s ) =
𝐴) |
285 | 258, 268,
259 | muls12d 27873 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) = ((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝐿))) |
286 | 284, 285 | oveq12d 7430 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 ·s 1s )
+s (𝐴
·s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝐿)))) |
287 | 283, 286 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) = (𝐴 +s ((𝑥𝐿
-s 𝐴)
·s (𝐴
·s 𝑦𝐿)))) |
288 | 280, 281,
287 | 3brtr4d 5180 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( 1s
·s 𝑥𝐿) <s (𝐴 ·s (
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)))) |
289 | 261, 282 | addscld 27703 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( 1s +s
((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) ∈ No ) |
290 | 258, 289 | mulscld 27831 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) ∈
No ) |
291 | 170 | adantrr 714 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 0s <s 𝑥𝐿) |
292 | 182 | adantrr 714 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ∃𝑦 ∈ No
(𝑥𝐿
·s 𝑦) =
1s ) |
293 | 261, 290,
278, 291, 292 | sltmuldivwd 27888 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (( 1s
·s 𝑥𝐿) <s (𝐴 ·s (
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))) ↔
1s <s ((𝐴
·s ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)))
/su 𝑥𝐿))) |
294 | 288, 293 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 1s <s ((𝐴 ·s (
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)))
/su 𝑥𝐿)) |
295 | 171 | adantrr 714 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝐿 ≠ 0s
) |
296 | 258, 289,
278, 295, 292 | divsasswd 27890 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝐴 ·s ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)))
/su 𝑥𝐿) = (𝐴 ·s (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿))) |
297 | 294, 296 | breqtrd 5174 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 1s <s (𝐴 ·s ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿))) |
298 | | oveq2 7420 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿) → (𝐴 ·s 𝑠) = (𝐴 ·s (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿))) |
299 | 298 | breq2d 5160 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿) → ( 1s
<s (𝐴
·s 𝑠)
↔ 1s <s (𝐴 ·s (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿)))) |
300 | 297, 299 | syl5ibrcom 246 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
→ 1s <s (𝐴 ·s 𝑠))) |
301 | 300 | rexlimdvva 3210 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
→ 1s <s (𝐴 ·s 𝑠))) |
302 | 83 | adantrr 714 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑥𝑅 -s 𝐴) ∈
No ) |
303 | 302 | mulsridd 27810 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s
1s ) = (𝑥𝑅 -s 𝐴)) |
304 | 192 | adantrl 713 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 1s <s (𝐴 ·s 𝑦𝑅)) |
305 | 77 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 1s ∈ No ) |
306 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝐴 ∈ No
) |
307 | 162 | adantrl 713 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑦𝑅 ∈ No ) |
308 | 306, 307 | mulscld 27831 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s 𝑦𝑅) ∈ No ) |
309 | 126 | adantrr 714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 0s <s (𝑥𝑅
-s 𝐴)) |
310 | 305, 308,
302, 309 | sltmul2d 27864 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( 1s <s (𝐴 ·s 𝑦𝑅) ↔
((𝑥𝑅
-s 𝐴)
·s 1s ) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))) |
311 | 304, 310 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s
1s ) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) |
312 | 303, 311 | eqbrtrrd 5172 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑥𝑅 -s 𝐴) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅))) |
313 | 81 | adantrr 714 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝑅 ∈ No ) |
314 | 302, 308 | mulscld 27831 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ∈
No ) |
315 | 313, 306,
314 | sltsubadd2d 27797 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝑅 -s 𝐴) <s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)) ↔
𝑥𝑅 <s
(𝐴 +s ((𝑥𝑅
-s 𝐴)
·s (𝐴
·s 𝑦𝑅))))) |
316 | 312, 315 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝑅 <s (𝐴 +s ((𝑥𝑅 -s 𝐴) ·s (𝐴 ·s 𝑦𝑅)))) |
317 | 313 | mulslidd 27839 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( 1s
·s 𝑥𝑅) = 𝑥𝑅) |
318 | 302, 307 | mulscld 27831 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) ∈
No ) |
319 | 306, 305,
318 | addsdid 27851 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) =
((𝐴 ·s
1s ) +s (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)))) |
320 | 306 | mulsridd 27810 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s 1s ) =
𝐴) |
321 | 306, 302,
307 | muls12d 27873 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) = ((𝑥𝑅
-s 𝐴)
·s (𝐴
·s 𝑦𝑅))) |
322 | 320, 321 | oveq12d 7430 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝐴 ·s 1s )
+s (𝐴
·s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝑅
-s 𝐴)
·s (𝐴
·s 𝑦𝑅)))) |
323 | 319, 322 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) = (𝐴 +s ((𝑥𝑅
-s 𝐴)
·s (𝐴
·s 𝑦𝑅)))) |
324 | 316, 317,
323 | 3brtr4d 5180 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( 1s
·s 𝑥𝑅) <s (𝐴 ·s (
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)))) |
325 | 305, 318 | addscld 27703 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( 1s +s
((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) ∈ No ) |
326 | 306, 325 | mulscld 27831 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) ∈
No ) |
327 | 103 | adantrr 714 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 0s <s 𝑥𝑅) |
328 | 116 | adantrr 714 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ∃𝑦 ∈ No
(𝑥𝑅
·s 𝑦) =
1s ) |
329 | 305, 326,
313, 327, 328 | sltmuldivwd 27888 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (( 1s
·s 𝑥𝑅) <s (𝐴 ·s (
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))) ↔
1s <s ((𝐴
·s ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)))
/su 𝑥𝑅))) |
330 | 324, 329 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 1s <s ((𝐴 ·s (
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)))
/su 𝑥𝑅)) |
331 | 104 | adantrr 714 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝑅 ≠ 0s
) |
332 | 306, 325,
313, 331, 328 | divsasswd 27890 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝐴 ·s ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)))
/su 𝑥𝑅) = (𝐴 ·s (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅))) |
333 | 330, 332 | breqtrd 5174 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 1s <s (𝐴 ·s ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅))) |
334 | | oveq2 7420 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅) → (𝐴 ·s 𝑠) = (𝐴 ·s (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅))) |
335 | 334 | breq2d 5160 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅) → ( 1s
<s (𝐴
·s 𝑠)
↔ 1s <s (𝐴 ·s (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅)))) |
336 | 333, 335 | syl5ibrcom 246 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
→ 1s <s (𝐴 ·s 𝑠))) |
337 | 336 | rexlimdvva 3210 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
→ 1s <s (𝐴 ·s 𝑠))) |
338 | 301, 337 | jaod 856 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ((∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿) ∨
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅))
→ 1s <s (𝐴 ·s 𝑠))) |
339 | 256, 338 | jaod 856 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ((𝑠 ∈ (𝑅‘𝑗) ∨ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑠 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿) ∨
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑠 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)))
→ 1s <s (𝐴 ·s 𝑠))) |
340 | 254, 339 | sylbid 239 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝑠 ∈ (𝑅‘suc 𝑗) → 1s <s (𝐴 ·s 𝑠))) |
341 | 340 | ralrimiv 3144 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠)) |
342 | 237, 341 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))) |
343 | 342 | 3exp 1118 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ ω → ((∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐)) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))))) |
344 | 343 | com12 32 |
. . . 4
⊢ (𝑗 ∈ ω → (𝜑 → ((∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐)) → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))))) |
345 | 344 | a2d 29 |
. . 3
⊢ (𝑗 ∈ ω → ((𝜑 → (∀𝑏 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑐))) → (𝜑 → (∀𝑟 ∈ (𝐿‘suc 𝑗)(𝐴 ·s 𝑟) <s 1s ∧ ∀𝑠 ∈ (𝑅‘suc 𝑗) 1s <s (𝐴 ·s 𝑠))))) |
346 | 6, 12, 26, 32, 54, 345 | finds 7893 |
. 2
⊢ (𝐼 ∈ ω → (𝜑 → (∀𝑏 ∈ (𝐿‘𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝐼) 1s <s (𝐴 ·s 𝑐)))) |
347 | 346 | impcom 407 |
1
⊢ ((𝜑 ∧ 𝐼 ∈ ω) → (∀𝑏 ∈ (𝐿‘𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝐼) 1s <s (𝐴 ·s 𝑐))) |