MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prwf Structured version   Visualization version   GIF version

Theorem prwf 9849
Description: An unordered pair is well-founded if its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
prwf ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → {𝐴, 𝐵} ∈ (𝑅1 “ On))

Proof of Theorem prwf
StepHypRef Expression
1 df-pr 4634 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 snwf 9847 . . 3 (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
3 snwf 9847 . . 3 (𝐵 (𝑅1 “ On) → {𝐵} ∈ (𝑅1 “ On))
4 unwf 9848 . . . 4 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) ↔ ({𝐴} ∪ {𝐵}) ∈ (𝑅1 “ On))
54biimpi 216 . . 3 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → ({𝐴} ∪ {𝐵}) ∈ (𝑅1 “ On))
62, 3, 5syl2an 596 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ({𝐴} ∪ {𝐵}) ∈ (𝑅1 “ On))
71, 6eqeltrid 2843 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → {𝐴, 𝐵} ∈ (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  cun 3961  {csn 4631  {cpr 4633   cuni 4912  cima 5692  Oncon0 6386  𝑅1cr1 9800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-r1 9802  df-rank 9803
This theorem is referenced by:  opwf  9850  rankopb  9890  r1limwun  10774  wfgru  10854  rankaltopb  35961  wfaxpr  44952
  Copyright terms: Public domain W3C validator