| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > r1omfv | Structured version Visualization version GIF version | ||
| Description: Value of the cumulative hierarchy of sets function at ω. (Contributed by BTernaryTau, 25-Jan-2026.) |
| Ref | Expression |
|---|---|
| r1omfv | ⊢ (𝑅1‘ω) = ∪ (𝑅1 “ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9540 | . . 3 ⊢ ω ∈ V | |
| 2 | limom 7818 | . . 3 ⊢ Lim ω | |
| 3 | r1lim 9672 | . . 3 ⊢ ((ω ∈ V ∧ Lim ω) → (𝑅1‘ω) = ∪ 𝑥 ∈ ω (𝑅1‘𝑥)) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (𝑅1‘ω) = ∪ 𝑥 ∈ ω (𝑅1‘𝑥) |
| 5 | r1funlim 9666 | . . . 4 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 6 | 5 | simpli 483 | . . 3 ⊢ Fun 𝑅1 |
| 7 | funiunfv 7188 | . . 3 ⊢ (Fun 𝑅1 → ∪ 𝑥 ∈ ω (𝑅1‘𝑥) = ∪ (𝑅1 “ ω)) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ ∪ 𝑥 ∈ ω (𝑅1‘𝑥) = ∪ (𝑅1 “ ω) |
| 9 | 4, 8 | eqtri 2756 | 1 ⊢ (𝑅1‘ω) = ∪ (𝑅1 “ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∪ cuni 4858 ∪ ciun 4941 dom cdm 5619 “ cima 5622 Lim wlim 6312 Fun wfun 6480 ‘cfv 6486 ωcom 7802 𝑅1cr1 9662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-r1 9664 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |