Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ranksn | Structured version Visualization version GIF version |
Description: The rank of a singleton. Theorem 15.17(v) of [Monk1] p. 112. (Contributed by NM, 28-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
ranksn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ranksn | ⊢ (rank‘{𝐴}) = suc (rank‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ranksn.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | unir1 9276 | . . 3 ⊢ ∪ (𝑅1 “ On) = V | |
3 | 1, 2 | eleqtrri 2852 | . 2 ⊢ 𝐴 ∈ ∪ (𝑅1 “ On) |
4 | ranksnb 9290 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴)) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ (rank‘{𝐴}) = suc (rank‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 Vcvv 3410 {csn 4523 ∪ cuni 4799 “ cima 5528 Oncon0 6170 suc csuc 6172 ‘cfv 6336 𝑅1cr1 9225 rankcrnk 9226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-reg 9090 ax-inf2 9138 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-om 7581 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-r1 9227 df-rank 9228 |
This theorem is referenced by: ranksuc 9328 ranksng 34019 |
Copyright terms: Public domain | W3C validator |