![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankvalg | Structured version Visualization version GIF version |
Description: Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). This variant of rankval 9811 expresses the class existence requirement as an antecedent instead of a hypothesis. (Contributed by NM, 5-Oct-2003.) |
Ref | Expression |
---|---|
rankvalg | β’ (π΄ β π β (rankβπ΄) = β© {π₯ β On β£ π΄ β (π 1βsuc π₯)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . 3 β’ (π¦ = π΄ β (rankβπ¦) = (rankβπ΄)) | |
2 | eleq1 2822 | . . . . 5 β’ (π¦ = π΄ β (π¦ β (π 1βsuc π₯) β π΄ β (π 1βsuc π₯))) | |
3 | 2 | rabbidv 3441 | . . . 4 β’ (π¦ = π΄ β {π₯ β On β£ π¦ β (π 1βsuc π₯)} = {π₯ β On β£ π΄ β (π 1βsuc π₯)}) |
4 | 3 | inteqd 4956 | . . 3 β’ (π¦ = π΄ β β© {π₯ β On β£ π¦ β (π 1βsuc π₯)} = β© {π₯ β On β£ π΄ β (π 1βsuc π₯)}) |
5 | 1, 4 | eqeq12d 2749 | . 2 β’ (π¦ = π΄ β ((rankβπ¦) = β© {π₯ β On β£ π¦ β (π 1βsuc π₯)} β (rankβπ΄) = β© {π₯ β On β£ π΄ β (π 1βsuc π₯)})) |
6 | vex 3479 | . . 3 β’ π¦ β V | |
7 | 6 | rankval 9811 | . 2 β’ (rankβπ¦) = β© {π₯ β On β£ π¦ β (π 1βsuc π₯)} |
8 | 5, 7 | vtoclg 3557 | 1 β’ (π΄ β π β (rankβπ΄) = β© {π₯ β On β£ π΄ β (π 1βsuc π₯)}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 {crab 3433 β© cint 4951 Oncon0 6365 suc csuc 6367 βcfv 6544 π 1cr1 9757 rankcrnk 9758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-reg 9587 ax-inf2 9636 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-r1 9759 df-rank 9760 |
This theorem is referenced by: rankval2 9813 |
Copyright terms: Public domain | W3C validator |