MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankvalg Structured version   Visualization version   GIF version

Theorem rankvalg 9812
Description: Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). This variant of rankval 9811 expresses the class existence requirement as an antecedent instead of a hypothesis. (Contributed by NM, 5-Oct-2003.)
Assertion
Ref Expression
rankvalg (𝐴 ∈ 𝑉 β†’ (rankβ€˜π΄) = ∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)})
Distinct variable group:   π‘₯,𝐴
Allowed substitution hint:   𝑉(π‘₯)

Proof of Theorem rankvalg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . 3 (𝑦 = 𝐴 β†’ (rankβ€˜π‘¦) = (rankβ€˜π΄))
2 eleq1 2822 . . . . 5 (𝑦 = 𝐴 β†’ (𝑦 ∈ (𝑅1β€˜suc π‘₯) ↔ 𝐴 ∈ (𝑅1β€˜suc π‘₯)))
32rabbidv 3441 . . . 4 (𝑦 = 𝐴 β†’ {π‘₯ ∈ On ∣ 𝑦 ∈ (𝑅1β€˜suc π‘₯)} = {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)})
43inteqd 4956 . . 3 (𝑦 = 𝐴 β†’ ∩ {π‘₯ ∈ On ∣ 𝑦 ∈ (𝑅1β€˜suc π‘₯)} = ∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)})
51, 4eqeq12d 2749 . 2 (𝑦 = 𝐴 β†’ ((rankβ€˜π‘¦) = ∩ {π‘₯ ∈ On ∣ 𝑦 ∈ (𝑅1β€˜suc π‘₯)} ↔ (rankβ€˜π΄) = ∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)}))
6 vex 3479 . . 3 𝑦 ∈ V
76rankval 9811 . 2 (rankβ€˜π‘¦) = ∩ {π‘₯ ∈ On ∣ 𝑦 ∈ (𝑅1β€˜suc π‘₯)}
85, 7vtoclg 3557 1 (𝐴 ∈ 𝑉 β†’ (rankβ€˜π΄) = ∩ {π‘₯ ∈ On ∣ 𝐴 ∈ (𝑅1β€˜suc π‘₯)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  {crab 3433  βˆ© cint 4951  Oncon0 6365  suc csuc 6367  β€˜cfv 6544  π‘…1cr1 9757  rankcrnk 9758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-reg 9587  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-r1 9759  df-rank 9760
This theorem is referenced by:  rankval2  9813
  Copyright terms: Public domain W3C validator