MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankel Structured version   Visualization version   GIF version

Theorem rankel 9607
Description: The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypothesis
Ref Expression
rankel.1 𝐵 ∈ V
Assertion
Ref Expression
rankel (𝐴𝐵 → (rank‘𝐴) ∈ (rank‘𝐵))

Proof of Theorem rankel
StepHypRef Expression
1 rankel.1 . . 3 𝐵 ∈ V
2 unir1 9581 . . 3 (𝑅1 “ On) = V
31, 2eleqtrri 2838 . 2 𝐵 (𝑅1 “ On)
4 rankelb 9592 . 2 (𝐵 (𝑅1 “ On) → (𝐴𝐵 → (rank‘𝐴) ∈ (rank‘𝐵)))
53, 4ax-mp 5 1 (𝐴𝐵 → (rank‘𝐴) ∈ (rank‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3429   cuni 4839  cima 5587  Oncon0 6259  cfv 6426  𝑅1cr1 9530  rankcrnk 9531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-reg 9338  ax-inf2 9386
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ov 7270  df-om 7703  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-r1 9532  df-rank 9533
This theorem is referenced by:  rankuni  9631  rankval4  9635  rankc2  9639  rankxplim  9647  rankelg  34478
  Copyright terms: Public domain W3C validator