![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringcidALTV | Structured version Visualization version GIF version |
Description: The identity arrow in the category of rings is the identity function. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringccatALTV.c | ⊢ 𝐶 = (RingCatALTV‘𝑈) |
ringcidALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
ringcidALTV.o | ⊢ 1 = (Id‘𝐶) |
ringcidALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
ringcidALTV.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringcidALTV.s | ⊢ 𝑆 = (Base‘𝑋) |
Ref | Expression |
---|---|
ringcidALTV | ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcidALTV.o | . . . 4 ⊢ 1 = (Id‘𝐶) | |
2 | ringcidALTV.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | ringccatALTV.c | . . . . . . 7 ⊢ 𝐶 = (RingCatALTV‘𝑈) | |
4 | ringcidALTV.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 3, 4 | ringccatidALTV 43801 | . . . . . 6 ⊢ (𝑈 ∈ 𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥))))) |
6 | 2, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥))))) |
7 | 6 | simprd 496 | . . . 4 ⊢ (𝜑 → (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥)))) |
8 | 1, 7 | syl5eq 2843 | . . 3 ⊢ (𝜑 → 1 = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥)))) |
9 | fveq2 6538 | . . . . 5 ⊢ (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋)) | |
10 | 9 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (Base‘𝑥) = (Base‘𝑋)) |
11 | 10 | reseq2d 5734 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ( I ↾ (Base‘𝑥)) = ( I ↾ (Base‘𝑋))) |
12 | ringcidALTV.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
13 | fvex 6551 | . . . 4 ⊢ (Base‘𝑋) ∈ V | |
14 | resiexg 7475 | . . . 4 ⊢ ((Base‘𝑋) ∈ V → ( I ↾ (Base‘𝑋)) ∈ V) | |
15 | 13, 14 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ (Base‘𝑋)) ∈ V) |
16 | 8, 11, 12, 15 | fvmptd 6641 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ (Base‘𝑋))) |
17 | ringcidALTV.s | . . 3 ⊢ 𝑆 = (Base‘𝑋) | |
18 | 17 | reseq2i 5731 | . 2 ⊢ ( I ↾ 𝑆) = ( I ↾ (Base‘𝑋)) |
19 | 16, 18 | syl6eqr 2849 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 Vcvv 3437 ↦ cmpt 5041 I cid 5347 ↾ cres 5445 ‘cfv 6225 Basecbs 16312 Catccat 16764 Idccid 16765 RingCatALTVcringcALTV 43753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-fz 12743 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-plusg 16407 df-hom 16418 df-cco 16419 df-0g 16544 df-cat 16768 df-cid 16769 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-mhm 17774 df-grp 17864 df-ghm 18097 df-mgp 18930 df-ur 18942 df-ring 18989 df-rnghom 19157 df-ringcALTV 43755 |
This theorem is referenced by: ringcsectALTV 43804 funcringcsetclem7ALTV 43814 srhmsubcALTV 43843 |
Copyright terms: Public domain | W3C validator |