Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringcidALTV Structured version   Visualization version   GIF version

Theorem ringcidALTV 48152
Description: The identity arrow in the category of rings is the identity function. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringccatALTV.c 𝐶 = (RingCatALTV‘𝑈)
ringcidALTV.b 𝐵 = (Base‘𝐶)
ringcidALTV.o 1 = (Id‘𝐶)
ringcidALTV.u (𝜑𝑈𝑉)
ringcidALTV.x (𝜑𝑋𝐵)
ringcidALTV.s 𝑆 = (Base‘𝑋)
Assertion
Ref Expression
ringcidALTV (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))

Proof of Theorem ringcidALTV
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ringcidALTV.o . . . 4 1 = (Id‘𝐶)
2 ringcidALTV.u . . . . . 6 (𝜑𝑈𝑉)
3 ringccatALTV.c . . . . . . 7 𝐶 = (RingCatALTV‘𝑈)
4 ringcidALTV.b . . . . . . 7 𝐵 = (Base‘𝐶)
53, 4ringccatidALTV 48150 . . . . . 6 (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
62, 5syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
76simprd 495 . . . 4 (𝜑 → (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥))))
81, 7eqtrid 2787 . . 3 (𝜑1 = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥))))
9 fveq2 6907 . . . . 5 (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋))
109adantl 481 . . . 4 ((𝜑𝑥 = 𝑋) → (Base‘𝑥) = (Base‘𝑋))
1110reseq2d 6000 . . 3 ((𝜑𝑥 = 𝑋) → ( I ↾ (Base‘𝑥)) = ( I ↾ (Base‘𝑋)))
12 ringcidALTV.x . . 3 (𝜑𝑋𝐵)
13 fvex 6920 . . . 4 (Base‘𝑋) ∈ V
14 resiexg 7935 . . . 4 ((Base‘𝑋) ∈ V → ( I ↾ (Base‘𝑋)) ∈ V)
1513, 14mp1i 13 . . 3 (𝜑 → ( I ↾ (Base‘𝑋)) ∈ V)
168, 11, 12, 15fvmptd 7023 . 2 (𝜑 → ( 1𝑋) = ( I ↾ (Base‘𝑋)))
17 ringcidALTV.s . . 3 𝑆 = (Base‘𝑋)
1817reseq2i 5997 . 2 ( I ↾ 𝑆) = ( I ↾ (Base‘𝑋))
1916, 18eqtr4di 2793 1 (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cmpt 5231   I cid 5582  cres 5691  cfv 6563  Basecbs 17245  Catccat 17709  Idccid 17710  RingCatALTVcringcALTV 48131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-hom 17322  df-cco 17323  df-0g 17488  df-cat 17713  df-cid 17714  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-ghm 19244  df-mgp 20153  df-ur 20200  df-ring 20253  df-rhm 20489  df-ringcALTV 48132
This theorem is referenced by:  ringcsectALTV  48153  funcringcsetclem7ALTV  48163  srhmsubcALTV  48169
  Copyright terms: Public domain W3C validator