Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringcidALTV | Structured version Visualization version GIF version |
Description: The identity arrow in the category of rings is the identity function. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringccatALTV.c | ⊢ 𝐶 = (RingCatALTV‘𝑈) |
ringcidALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
ringcidALTV.o | ⊢ 1 = (Id‘𝐶) |
ringcidALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
ringcidALTV.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringcidALTV.s | ⊢ 𝑆 = (Base‘𝑋) |
Ref | Expression |
---|---|
ringcidALTV | ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcidALTV.o | . . . 4 ⊢ 1 = (Id‘𝐶) | |
2 | ringcidALTV.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | ringccatALTV.c | . . . . . . 7 ⊢ 𝐶 = (RingCatALTV‘𝑈) | |
4 | ringcidALTV.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 3, 4 | ringccatidALTV 45283 | . . . . . 6 ⊢ (𝑈 ∈ 𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥))))) |
6 | 2, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥))))) |
7 | 6 | simprd 499 | . . . 4 ⊢ (𝜑 → (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥)))) |
8 | 1, 7 | syl5eq 2790 | . . 3 ⊢ (𝜑 → 1 = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥)))) |
9 | fveq2 6717 | . . . . 5 ⊢ (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋)) | |
10 | 9 | adantl 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (Base‘𝑥) = (Base‘𝑋)) |
11 | 10 | reseq2d 5851 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ( I ↾ (Base‘𝑥)) = ( I ↾ (Base‘𝑋))) |
12 | ringcidALTV.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
13 | fvex 6730 | . . . 4 ⊢ (Base‘𝑋) ∈ V | |
14 | resiexg 7692 | . . . 4 ⊢ ((Base‘𝑋) ∈ V → ( I ↾ (Base‘𝑋)) ∈ V) | |
15 | 13, 14 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ (Base‘𝑋)) ∈ V) |
16 | 8, 11, 12, 15 | fvmptd 6825 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ (Base‘𝑋))) |
17 | ringcidALTV.s | . . 3 ⊢ 𝑆 = (Base‘𝑋) | |
18 | 17 | reseq2i 5848 | . 2 ⊢ ( I ↾ 𝑆) = ( I ↾ (Base‘𝑋)) |
19 | 16, 18 | eqtr4di 2796 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ↦ cmpt 5135 I cid 5454 ↾ cres 5553 ‘cfv 6380 Basecbs 16760 Catccat 17167 Idccid 17168 RingCatALTVcringcALTV 45235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-hom 16826 df-cco 16827 df-0g 16946 df-cat 17171 df-cid 17172 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mhm 18218 df-grp 18368 df-ghm 18620 df-mgp 19505 df-ur 19517 df-ring 19564 df-rnghom 19735 df-ringcALTV 45237 |
This theorem is referenced by: ringcsectALTV 45286 funcringcsetclem7ALTV 45296 srhmsubcALTV 45325 |
Copyright terms: Public domain | W3C validator |