![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringcidALTV | Structured version Visualization version GIF version |
Description: The identity arrow in the category of rings is the identity function. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringccatALTV.c | β’ πΆ = (RingCatALTVβπ) |
ringcidALTV.b | β’ π΅ = (BaseβπΆ) |
ringcidALTV.o | β’ 1 = (IdβπΆ) |
ringcidALTV.u | β’ (π β π β π) |
ringcidALTV.x | β’ (π β π β π΅) |
ringcidALTV.s | β’ π = (Baseβπ) |
Ref | Expression |
---|---|
ringcidALTV | β’ (π β ( 1 βπ) = ( I βΎ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcidALTV.o | . . . 4 β’ 1 = (IdβπΆ) | |
2 | ringcidALTV.u | . . . . . 6 β’ (π β π β π) | |
3 | ringccatALTV.c | . . . . . . 7 β’ πΆ = (RingCatALTVβπ) | |
4 | ringcidALTV.b | . . . . . . 7 β’ π΅ = (BaseβπΆ) | |
5 | 3, 4 | ringccatidALTV 47476 | . . . . . 6 β’ (π β π β (πΆ β Cat β§ (IdβπΆ) = (π₯ β π΅ β¦ ( I βΎ (Baseβπ₯))))) |
6 | 2, 5 | syl 17 | . . . . 5 β’ (π β (πΆ β Cat β§ (IdβπΆ) = (π₯ β π΅ β¦ ( I βΎ (Baseβπ₯))))) |
7 | 6 | simprd 494 | . . . 4 β’ (π β (IdβπΆ) = (π₯ β π΅ β¦ ( I βΎ (Baseβπ₯)))) |
8 | 1, 7 | eqtrid 2777 | . . 3 β’ (π β 1 = (π₯ β π΅ β¦ ( I βΎ (Baseβπ₯)))) |
9 | fveq2 6890 | . . . . 5 β’ (π₯ = π β (Baseβπ₯) = (Baseβπ)) | |
10 | 9 | adantl 480 | . . . 4 β’ ((π β§ π₯ = π) β (Baseβπ₯) = (Baseβπ)) |
11 | 10 | reseq2d 5980 | . . 3 β’ ((π β§ π₯ = π) β ( I βΎ (Baseβπ₯)) = ( I βΎ (Baseβπ))) |
12 | ringcidALTV.x | . . 3 β’ (π β π β π΅) | |
13 | fvex 6903 | . . . 4 β’ (Baseβπ) β V | |
14 | resiexg 7914 | . . . 4 β’ ((Baseβπ) β V β ( I βΎ (Baseβπ)) β V) | |
15 | 13, 14 | mp1i 13 | . . 3 β’ (π β ( I βΎ (Baseβπ)) β V) |
16 | 8, 11, 12, 15 | fvmptd 7005 | . 2 β’ (π β ( 1 βπ) = ( I βΎ (Baseβπ))) |
17 | ringcidALTV.s | . . 3 β’ π = (Baseβπ) | |
18 | 17 | reseq2i 5977 | . 2 β’ ( I βΎ π) = ( I βΎ (Baseβπ)) |
19 | 16, 18 | eqtr4di 2783 | 1 β’ (π β ( 1 βπ) = ( I βΎ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 Vcvv 3463 β¦ cmpt 5227 I cid 5570 βΎ cres 5675 βcfv 6543 Basecbs 17174 Catccat 17638 Idccid 17639 RingCatALTVcringcALTV 47457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-fz 13512 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-plusg 17240 df-hom 17251 df-cco 17252 df-0g 17417 df-cat 17642 df-cid 17643 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-mhm 18734 df-grp 18892 df-ghm 19167 df-mgp 20074 df-ur 20121 df-ring 20174 df-rhm 20410 df-ringcALTV 47458 |
This theorem is referenced by: ringcsectALTV 47479 funcringcsetclem7ALTV 47489 srhmsubcALTV 47495 |
Copyright terms: Public domain | W3C validator |