Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringcidALTV Structured version   Visualization version   GIF version

Theorem ringcidALTV 43803
Description: The identity arrow in the category of rings is the identity function. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringccatALTV.c 𝐶 = (RingCatALTV‘𝑈)
ringcidALTV.b 𝐵 = (Base‘𝐶)
ringcidALTV.o 1 = (Id‘𝐶)
ringcidALTV.u (𝜑𝑈𝑉)
ringcidALTV.x (𝜑𝑋𝐵)
ringcidALTV.s 𝑆 = (Base‘𝑋)
Assertion
Ref Expression
ringcidALTV (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))

Proof of Theorem ringcidALTV
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ringcidALTV.o . . . 4 1 = (Id‘𝐶)
2 ringcidALTV.u . . . . . 6 (𝜑𝑈𝑉)
3 ringccatALTV.c . . . . . . 7 𝐶 = (RingCatALTV‘𝑈)
4 ringcidALTV.b . . . . . . 7 𝐵 = (Base‘𝐶)
53, 4ringccatidALTV 43801 . . . . . 6 (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
62, 5syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
76simprd 496 . . . 4 (𝜑 → (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥))))
81, 7syl5eq 2843 . . 3 (𝜑1 = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥))))
9 fveq2 6538 . . . . 5 (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋))
109adantl 482 . . . 4 ((𝜑𝑥 = 𝑋) → (Base‘𝑥) = (Base‘𝑋))
1110reseq2d 5734 . . 3 ((𝜑𝑥 = 𝑋) → ( I ↾ (Base‘𝑥)) = ( I ↾ (Base‘𝑋)))
12 ringcidALTV.x . . 3 (𝜑𝑋𝐵)
13 fvex 6551 . . . 4 (Base‘𝑋) ∈ V
14 resiexg 7475 . . . 4 ((Base‘𝑋) ∈ V → ( I ↾ (Base‘𝑋)) ∈ V)
1513, 14mp1i 13 . . 3 (𝜑 → ( I ↾ (Base‘𝑋)) ∈ V)
168, 11, 12, 15fvmptd 6641 . 2 (𝜑 → ( 1𝑋) = ( I ↾ (Base‘𝑋)))
17 ringcidALTV.s . . 3 𝑆 = (Base‘𝑋)
1817reseq2i 5731 . 2 ( I ↾ 𝑆) = ( I ↾ (Base‘𝑋))
1916, 18syl6eqr 2849 1 (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  Vcvv 3437  cmpt 5041   I cid 5347  cres 5445  cfv 6225  Basecbs 16312  Catccat 16764  Idccid 16765  RingCatALTVcringcALTV 43753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-fz 12743  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-plusg 16407  df-hom 16418  df-cco 16419  df-0g 16544  df-cat 16768  df-cid 16769  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-mhm 17774  df-grp 17864  df-ghm 18097  df-mgp 18930  df-ur 18942  df-ring 18989  df-rnghom 19157  df-ringcALTV 43755
This theorem is referenced by:  ringcsectALTV  43804  funcringcsetclem7ALTV  43814  srhmsubcALTV  43843
  Copyright terms: Public domain W3C validator