Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringcidALTV Structured version   Visualization version   GIF version

Theorem ringcidALTV 44739
 Description: The identity arrow in the category of rings is the identity function. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringccatALTV.c 𝐶 = (RingCatALTV‘𝑈)
ringcidALTV.b 𝐵 = (Base‘𝐶)
ringcidALTV.o 1 = (Id‘𝐶)
ringcidALTV.u (𝜑𝑈𝑉)
ringcidALTV.x (𝜑𝑋𝐵)
ringcidALTV.s 𝑆 = (Base‘𝑋)
Assertion
Ref Expression
ringcidALTV (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))

Proof of Theorem ringcidALTV
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ringcidALTV.o . . . 4 1 = (Id‘𝐶)
2 ringcidALTV.u . . . . . 6 (𝜑𝑈𝑉)
3 ringccatALTV.c . . . . . . 7 𝐶 = (RingCatALTV‘𝑈)
4 ringcidALTV.b . . . . . . 7 𝐵 = (Base‘𝐶)
53, 4ringccatidALTV 44737 . . . . . 6 (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
62, 5syl 17 . . . . 5 (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
76simprd 499 . . . 4 (𝜑 → (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥))))
81, 7syl5eq 2845 . . 3 (𝜑1 = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥))))
9 fveq2 6650 . . . . 5 (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋))
109adantl 485 . . . 4 ((𝜑𝑥 = 𝑋) → (Base‘𝑥) = (Base‘𝑋))
1110reseq2d 5819 . . 3 ((𝜑𝑥 = 𝑋) → ( I ↾ (Base‘𝑥)) = ( I ↾ (Base‘𝑋)))
12 ringcidALTV.x . . 3 (𝜑𝑋𝐵)
13 fvex 6663 . . . 4 (Base‘𝑋) ∈ V
14 resiexg 7608 . . . 4 ((Base‘𝑋) ∈ V → ( I ↾ (Base‘𝑋)) ∈ V)
1513, 14mp1i 13 . . 3 (𝜑 → ( I ↾ (Base‘𝑋)) ∈ V)
168, 11, 12, 15fvmptd 6757 . 2 (𝜑 → ( 1𝑋) = ( I ↾ (Base‘𝑋)))
17 ringcidALTV.s . . 3 𝑆 = (Base‘𝑋)
1817reseq2i 5816 . 2 ( I ↾ 𝑆) = ( I ↾ (Base‘𝑋))
1916, 18eqtr4di 2851 1 (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3441   ↦ cmpt 5111   I cid 5425   ↾ cres 5522  ‘cfv 6327  Basecbs 16482  Catccat 16934  Idccid 16935  RingCatALTVcringcALTV 44689 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7568  df-1st 7678  df-2nd 7679  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-map 8398  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-nn 11633  df-2 11695  df-3 11696  df-4 11697  df-5 11698  df-6 11699  df-7 11700  df-8 11701  df-9 11702  df-n0 11893  df-z 11977  df-dec 12094  df-uz 12239  df-fz 12893  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-plusg 16577  df-hom 16588  df-cco 16589  df-0g 16714  df-cat 16938  df-cid 16939  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-grp 18105  df-ghm 18356  df-mgp 19241  df-ur 19253  df-ring 19300  df-rnghom 19471  df-ringcALTV 44691 This theorem is referenced by:  ringcsectALTV  44740  funcringcsetclem7ALTV  44750  srhmsubcALTV  44779
 Copyright terms: Public domain W3C validator