| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnghmsubcsetclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for rnghmsubcsetc 20549. (Contributed by AV, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| rnghmsubcsetc.c | ⊢ 𝐶 = (ExtStrCat‘𝑈) |
| rnghmsubcsetc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rnghmsubcsetc.b | ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
| rnghmsubcsetc.h | ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| rnghmsubcsetclem1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmsubcsetc.b | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) | |
| 2 | 1 | eleq2d 2815 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Rng ∩ 𝑈))) |
| 3 | elin 3933 | . . . . . 6 ⊢ (𝑥 ∈ (Rng ∩ 𝑈) ↔ (𝑥 ∈ Rng ∧ 𝑥 ∈ 𝑈)) | |
| 4 | 3 | simplbi 497 | . . . . 5 ⊢ (𝑥 ∈ (Rng ∩ 𝑈) → 𝑥 ∈ Rng) |
| 5 | 2, 4 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ Rng)) |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ Rng) |
| 7 | eqid 2730 | . . . 4 ⊢ (Base‘𝑥) = (Base‘𝑥) | |
| 8 | 7 | idrnghm 20374 | . . 3 ⊢ (𝑥 ∈ Rng → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHom 𝑥)) |
| 9 | 6, 8 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHom 𝑥)) |
| 10 | rnghmsubcsetc.c | . . 3 ⊢ 𝐶 = (ExtStrCat‘𝑈) | |
| 11 | eqid 2730 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 12 | rnghmsubcsetc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ 𝑉) |
| 14 | 3 | simprbi 496 | . . . . 5 ⊢ (𝑥 ∈ (Rng ∩ 𝑈) → 𝑥 ∈ 𝑈) |
| 15 | 2, 14 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈)) |
| 16 | 15 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑈) |
| 17 | 10, 11, 13, 16 | estrcid 18102 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) = ( I ↾ (Base‘𝑥))) |
| 18 | rnghmsubcsetc.h | . . . 4 ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | |
| 19 | 18 | oveqdr 7418 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑥)) |
| 20 | eqid 2730 | . . . . . . . 8 ⊢ (RngCat‘𝑈) = (RngCat‘𝑈) | |
| 21 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘(RngCat‘𝑈)) = (Base‘(RngCat‘𝑈)) | |
| 22 | eqid 2730 | . . . . . . . 8 ⊢ (Hom ‘(RngCat‘𝑈)) = (Hom ‘(RngCat‘𝑈)) | |
| 23 | 20, 21, 12, 22 | rngchomfval 20538 | . . . . . . 7 ⊢ (𝜑 → (Hom ‘(RngCat‘𝑈)) = ( RngHom ↾ ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈))))) |
| 24 | 20, 21, 12 | rngcbas 20537 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘(RngCat‘𝑈)) = (𝑈 ∩ Rng)) |
| 25 | incom 4175 | . . . . . . . . . . . 12 ⊢ (Rng ∩ 𝑈) = (𝑈 ∩ Rng) | |
| 26 | 1, 25 | eqtrdi 2781 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
| 27 | 26 | eqcomd 2736 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑈 ∩ Rng) = 𝐵) |
| 28 | 24, 27 | eqtrd 2765 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘(RngCat‘𝑈)) = 𝐵) |
| 29 | 28 | sqxpeqd 5673 | . . . . . . . 8 ⊢ (𝜑 → ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈))) = (𝐵 × 𝐵)) |
| 30 | 29 | reseq2d 5953 | . . . . . . 7 ⊢ (𝜑 → ( RngHom ↾ ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈)))) = ( RngHom ↾ (𝐵 × 𝐵))) |
| 31 | 23, 30 | eqtrd 2765 | . . . . . 6 ⊢ (𝜑 → (Hom ‘(RngCat‘𝑈)) = ( RngHom ↾ (𝐵 × 𝐵))) |
| 32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Hom ‘(RngCat‘𝑈)) = ( RngHom ↾ (𝐵 × 𝐵))) |
| 33 | 32 | eqcomd 2736 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( RngHom ↾ (𝐵 × 𝐵)) = (Hom ‘(RngCat‘𝑈))) |
| 34 | 33 | oveqd 7407 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑥) = (𝑥(Hom ‘(RngCat‘𝑈))𝑥)) |
| 35 | 26 | eleq2d 2815 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝑈 ∩ Rng))) |
| 36 | 35 | biimpa 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝑈 ∩ Rng)) |
| 37 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Base‘(RngCat‘𝑈)) = (𝑈 ∩ Rng)) |
| 38 | 36, 37 | eleqtrrd 2832 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Base‘(RngCat‘𝑈))) |
| 39 | 20, 21, 13, 22, 38, 38 | rngchom 20539 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥(Hom ‘(RngCat‘𝑈))𝑥) = (𝑥 RngHom 𝑥)) |
| 40 | 19, 34, 39 | 3eqtrd 2769 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥 RngHom 𝑥)) |
| 41 | 9, 17, 40 | 3eltr4d 2844 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 I cid 5535 × cxp 5639 ↾ cres 5643 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Hom chom 17238 Idccid 17633 ExtStrCatcestrc 18090 Rngcrng 20068 RngHom crnghm 20350 RngCatcrngc 20532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-hom 17251 df-cco 17252 df-cat 17636 df-cid 17637 df-resc 17780 df-estrc 18091 df-mgm 18574 df-mgmhm 18626 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-ghm 19152 df-abl 19720 df-mgp 20057 df-rng 20069 df-rnghm 20352 df-rngc 20533 |
| This theorem is referenced by: rnghmsubcsetc 20549 |
| Copyright terms: Public domain | W3C validator |