| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnghmsubcsetclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for rnghmsubcsetc 20593. (Contributed by AV, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| rnghmsubcsetc.c | ⊢ 𝐶 = (ExtStrCat‘𝑈) |
| rnghmsubcsetc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rnghmsubcsetc.b | ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
| rnghmsubcsetc.h | ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| rnghmsubcsetclem1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmsubcsetc.b | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) | |
| 2 | 1 | eleq2d 2820 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Rng ∩ 𝑈))) |
| 3 | elin 3942 | . . . . . 6 ⊢ (𝑥 ∈ (Rng ∩ 𝑈) ↔ (𝑥 ∈ Rng ∧ 𝑥 ∈ 𝑈)) | |
| 4 | 3 | simplbi 497 | . . . . 5 ⊢ (𝑥 ∈ (Rng ∩ 𝑈) → 𝑥 ∈ Rng) |
| 5 | 2, 4 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ Rng)) |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ Rng) |
| 7 | eqid 2735 | . . . 4 ⊢ (Base‘𝑥) = (Base‘𝑥) | |
| 8 | 7 | idrnghm 20418 | . . 3 ⊢ (𝑥 ∈ Rng → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHom 𝑥)) |
| 9 | 6, 8 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHom 𝑥)) |
| 10 | rnghmsubcsetc.c | . . 3 ⊢ 𝐶 = (ExtStrCat‘𝑈) | |
| 11 | eqid 2735 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 12 | rnghmsubcsetc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ 𝑉) |
| 14 | 3 | simprbi 496 | . . . . 5 ⊢ (𝑥 ∈ (Rng ∩ 𝑈) → 𝑥 ∈ 𝑈) |
| 15 | 2, 14 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈)) |
| 16 | 15 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑈) |
| 17 | 10, 11, 13, 16 | estrcid 18146 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) = ( I ↾ (Base‘𝑥))) |
| 18 | rnghmsubcsetc.h | . . . 4 ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | |
| 19 | 18 | oveqdr 7433 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑥)) |
| 20 | eqid 2735 | . . . . . . . 8 ⊢ (RngCat‘𝑈) = (RngCat‘𝑈) | |
| 21 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘(RngCat‘𝑈)) = (Base‘(RngCat‘𝑈)) | |
| 22 | eqid 2735 | . . . . . . . 8 ⊢ (Hom ‘(RngCat‘𝑈)) = (Hom ‘(RngCat‘𝑈)) | |
| 23 | 20, 21, 12, 22 | rngchomfval 20582 | . . . . . . 7 ⊢ (𝜑 → (Hom ‘(RngCat‘𝑈)) = ( RngHom ↾ ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈))))) |
| 24 | 20, 21, 12 | rngcbas 20581 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘(RngCat‘𝑈)) = (𝑈 ∩ Rng)) |
| 25 | incom 4184 | . . . . . . . . . . . 12 ⊢ (Rng ∩ 𝑈) = (𝑈 ∩ Rng) | |
| 26 | 1, 25 | eqtrdi 2786 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
| 27 | 26 | eqcomd 2741 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑈 ∩ Rng) = 𝐵) |
| 28 | 24, 27 | eqtrd 2770 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘(RngCat‘𝑈)) = 𝐵) |
| 29 | 28 | sqxpeqd 5686 | . . . . . . . 8 ⊢ (𝜑 → ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈))) = (𝐵 × 𝐵)) |
| 30 | 29 | reseq2d 5966 | . . . . . . 7 ⊢ (𝜑 → ( RngHom ↾ ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈)))) = ( RngHom ↾ (𝐵 × 𝐵))) |
| 31 | 23, 30 | eqtrd 2770 | . . . . . 6 ⊢ (𝜑 → (Hom ‘(RngCat‘𝑈)) = ( RngHom ↾ (𝐵 × 𝐵))) |
| 32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Hom ‘(RngCat‘𝑈)) = ( RngHom ↾ (𝐵 × 𝐵))) |
| 33 | 32 | eqcomd 2741 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( RngHom ↾ (𝐵 × 𝐵)) = (Hom ‘(RngCat‘𝑈))) |
| 34 | 33 | oveqd 7422 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑥) = (𝑥(Hom ‘(RngCat‘𝑈))𝑥)) |
| 35 | 26 | eleq2d 2820 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝑈 ∩ Rng))) |
| 36 | 35 | biimpa 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝑈 ∩ Rng)) |
| 37 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Base‘(RngCat‘𝑈)) = (𝑈 ∩ Rng)) |
| 38 | 36, 37 | eleqtrrd 2837 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Base‘(RngCat‘𝑈))) |
| 39 | 20, 21, 13, 22, 38, 38 | rngchom 20583 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥(Hom ‘(RngCat‘𝑈))𝑥) = (𝑥 RngHom 𝑥)) |
| 40 | 19, 34, 39 | 3eqtrd 2774 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥 RngHom 𝑥)) |
| 41 | 9, 17, 40 | 3eltr4d 2849 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 I cid 5547 × cxp 5652 ↾ cres 5656 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 Hom chom 17282 Idccid 17677 ExtStrCatcestrc 18134 Rngcrng 20112 RngHom crnghm 20394 RngCatcrngc 20576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-hom 17295 df-cco 17296 df-cat 17680 df-cid 17681 df-resc 17824 df-estrc 18135 df-mgm 18618 df-mgmhm 18670 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-ghm 19196 df-abl 19764 df-mgp 20101 df-rng 20113 df-rnghm 20396 df-rngc 20577 |
| This theorem is referenced by: rnghmsubcsetc 20593 |
| Copyright terms: Public domain | W3C validator |