| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnghmsubcsetclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for rnghmsubcsetc 20536. (Contributed by AV, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| rnghmsubcsetc.c | ⊢ 𝐶 = (ExtStrCat‘𝑈) |
| rnghmsubcsetc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rnghmsubcsetc.b | ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
| rnghmsubcsetc.h | ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| rnghmsubcsetclem1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmsubcsetc.b | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) | |
| 2 | 1 | eleq2d 2814 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Rng ∩ 𝑈))) |
| 3 | elin 3921 | . . . . . 6 ⊢ (𝑥 ∈ (Rng ∩ 𝑈) ↔ (𝑥 ∈ Rng ∧ 𝑥 ∈ 𝑈)) | |
| 4 | 3 | simplbi 497 | . . . . 5 ⊢ (𝑥 ∈ (Rng ∩ 𝑈) → 𝑥 ∈ Rng) |
| 5 | 2, 4 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ Rng)) |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ Rng) |
| 7 | eqid 2729 | . . . 4 ⊢ (Base‘𝑥) = (Base‘𝑥) | |
| 8 | 7 | idrnghm 20361 | . . 3 ⊢ (𝑥 ∈ Rng → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHom 𝑥)) |
| 9 | 6, 8 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHom 𝑥)) |
| 10 | rnghmsubcsetc.c | . . 3 ⊢ 𝐶 = (ExtStrCat‘𝑈) | |
| 11 | eqid 2729 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 12 | rnghmsubcsetc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ 𝑉) |
| 14 | 3 | simprbi 496 | . . . . 5 ⊢ (𝑥 ∈ (Rng ∩ 𝑈) → 𝑥 ∈ 𝑈) |
| 15 | 2, 14 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈)) |
| 16 | 15 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑈) |
| 17 | 10, 11, 13, 16 | estrcid 18058 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) = ( I ↾ (Base‘𝑥))) |
| 18 | rnghmsubcsetc.h | . . . 4 ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | |
| 19 | 18 | oveqdr 7381 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑥)) |
| 20 | eqid 2729 | . . . . . . . 8 ⊢ (RngCat‘𝑈) = (RngCat‘𝑈) | |
| 21 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘(RngCat‘𝑈)) = (Base‘(RngCat‘𝑈)) | |
| 22 | eqid 2729 | . . . . . . . 8 ⊢ (Hom ‘(RngCat‘𝑈)) = (Hom ‘(RngCat‘𝑈)) | |
| 23 | 20, 21, 12, 22 | rngchomfval 20525 | . . . . . . 7 ⊢ (𝜑 → (Hom ‘(RngCat‘𝑈)) = ( RngHom ↾ ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈))))) |
| 24 | 20, 21, 12 | rngcbas 20524 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘(RngCat‘𝑈)) = (𝑈 ∩ Rng)) |
| 25 | incom 4162 | . . . . . . . . . . . 12 ⊢ (Rng ∩ 𝑈) = (𝑈 ∩ Rng) | |
| 26 | 1, 25 | eqtrdi 2780 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
| 27 | 26 | eqcomd 2735 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑈 ∩ Rng) = 𝐵) |
| 28 | 24, 27 | eqtrd 2764 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘(RngCat‘𝑈)) = 𝐵) |
| 29 | 28 | sqxpeqd 5655 | . . . . . . . 8 ⊢ (𝜑 → ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈))) = (𝐵 × 𝐵)) |
| 30 | 29 | reseq2d 5934 | . . . . . . 7 ⊢ (𝜑 → ( RngHom ↾ ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈)))) = ( RngHom ↾ (𝐵 × 𝐵))) |
| 31 | 23, 30 | eqtrd 2764 | . . . . . 6 ⊢ (𝜑 → (Hom ‘(RngCat‘𝑈)) = ( RngHom ↾ (𝐵 × 𝐵))) |
| 32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Hom ‘(RngCat‘𝑈)) = ( RngHom ↾ (𝐵 × 𝐵))) |
| 33 | 32 | eqcomd 2735 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( RngHom ↾ (𝐵 × 𝐵)) = (Hom ‘(RngCat‘𝑈))) |
| 34 | 33 | oveqd 7370 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑥) = (𝑥(Hom ‘(RngCat‘𝑈))𝑥)) |
| 35 | 26 | eleq2d 2814 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝑈 ∩ Rng))) |
| 36 | 35 | biimpa 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝑈 ∩ Rng)) |
| 37 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Base‘(RngCat‘𝑈)) = (𝑈 ∩ Rng)) |
| 38 | 36, 37 | eleqtrrd 2831 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Base‘(RngCat‘𝑈))) |
| 39 | 20, 21, 13, 22, 38, 38 | rngchom 20526 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥(Hom ‘(RngCat‘𝑈))𝑥) = (𝑥 RngHom 𝑥)) |
| 40 | 19, 34, 39 | 3eqtrd 2768 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥 RngHom 𝑥)) |
| 41 | 9, 17, 40 | 3eltr4d 2843 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 I cid 5517 × cxp 5621 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Hom chom 17190 Idccid 17589 ExtStrCatcestrc 18046 Rngcrng 20055 RngHom crnghm 20337 RngCatcrngc 20519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-hom 17203 df-cco 17204 df-cat 17592 df-cid 17593 df-resc 17736 df-estrc 18047 df-mgm 18532 df-mgmhm 18584 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-ghm 19110 df-abl 19680 df-mgp 20044 df-rng 20056 df-rnghm 20339 df-rngc 20520 |
| This theorem is referenced by: rnghmsubcsetc 20536 |
| Copyright terms: Public domain | W3C validator |