| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnghmsubcsetclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for rnghmsubcsetc 20558. (Contributed by AV, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| rnghmsubcsetc.c | ⊢ 𝐶 = (ExtStrCat‘𝑈) |
| rnghmsubcsetc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rnghmsubcsetc.b | ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
| rnghmsubcsetc.h | ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| rnghmsubcsetclem1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmsubcsetc.b | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) | |
| 2 | 1 | eleq2d 2819 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Rng ∩ 𝑈))) |
| 3 | elin 3915 | . . . . . 6 ⊢ (𝑥 ∈ (Rng ∩ 𝑈) ↔ (𝑥 ∈ Rng ∧ 𝑥 ∈ 𝑈)) | |
| 4 | 3 | simplbi 497 | . . . . 5 ⊢ (𝑥 ∈ (Rng ∩ 𝑈) → 𝑥 ∈ Rng) |
| 5 | 2, 4 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ Rng)) |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ Rng) |
| 7 | eqid 2733 | . . . 4 ⊢ (Base‘𝑥) = (Base‘𝑥) | |
| 8 | 7 | idrnghm 20386 | . . 3 ⊢ (𝑥 ∈ Rng → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHom 𝑥)) |
| 9 | 6, 8 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RngHom 𝑥)) |
| 10 | rnghmsubcsetc.c | . . 3 ⊢ 𝐶 = (ExtStrCat‘𝑈) | |
| 11 | eqid 2733 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 12 | rnghmsubcsetc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ 𝑉) |
| 14 | 3 | simprbi 496 | . . . . 5 ⊢ (𝑥 ∈ (Rng ∩ 𝑈) → 𝑥 ∈ 𝑈) |
| 15 | 2, 14 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈)) |
| 16 | 15 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑈) |
| 17 | 10, 11, 13, 16 | estrcid 18050 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) = ( I ↾ (Base‘𝑥))) |
| 18 | rnghmsubcsetc.h | . . . 4 ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | |
| 19 | 18 | oveqdr 7383 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑥)) |
| 20 | eqid 2733 | . . . . . . . 8 ⊢ (RngCat‘𝑈) = (RngCat‘𝑈) | |
| 21 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘(RngCat‘𝑈)) = (Base‘(RngCat‘𝑈)) | |
| 22 | eqid 2733 | . . . . . . . 8 ⊢ (Hom ‘(RngCat‘𝑈)) = (Hom ‘(RngCat‘𝑈)) | |
| 23 | 20, 21, 12, 22 | rngchomfval 20547 | . . . . . . 7 ⊢ (𝜑 → (Hom ‘(RngCat‘𝑈)) = ( RngHom ↾ ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈))))) |
| 24 | 20, 21, 12 | rngcbas 20546 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘(RngCat‘𝑈)) = (𝑈 ∩ Rng)) |
| 25 | incom 4160 | . . . . . . . . . . . 12 ⊢ (Rng ∩ 𝑈) = (𝑈 ∩ Rng) | |
| 26 | 1, 25 | eqtrdi 2784 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
| 27 | 26 | eqcomd 2739 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑈 ∩ Rng) = 𝐵) |
| 28 | 24, 27 | eqtrd 2768 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘(RngCat‘𝑈)) = 𝐵) |
| 29 | 28 | sqxpeqd 5653 | . . . . . . . 8 ⊢ (𝜑 → ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈))) = (𝐵 × 𝐵)) |
| 30 | 29 | reseq2d 5935 | . . . . . . 7 ⊢ (𝜑 → ( RngHom ↾ ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈)))) = ( RngHom ↾ (𝐵 × 𝐵))) |
| 31 | 23, 30 | eqtrd 2768 | . . . . . 6 ⊢ (𝜑 → (Hom ‘(RngCat‘𝑈)) = ( RngHom ↾ (𝐵 × 𝐵))) |
| 32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Hom ‘(RngCat‘𝑈)) = ( RngHom ↾ (𝐵 × 𝐵))) |
| 33 | 32 | eqcomd 2739 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( RngHom ↾ (𝐵 × 𝐵)) = (Hom ‘(RngCat‘𝑈))) |
| 34 | 33 | oveqd 7372 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥( RngHom ↾ (𝐵 × 𝐵))𝑥) = (𝑥(Hom ‘(RngCat‘𝑈))𝑥)) |
| 35 | 26 | eleq2d 2819 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝑈 ∩ Rng))) |
| 36 | 35 | biimpa 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝑈 ∩ Rng)) |
| 37 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (Base‘(RngCat‘𝑈)) = (𝑈 ∩ Rng)) |
| 38 | 36, 37 | eleqtrrd 2836 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Base‘(RngCat‘𝑈))) |
| 39 | 20, 21, 13, 22, 38, 38 | rngchom 20548 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥(Hom ‘(RngCat‘𝑈))𝑥) = (𝑥 RngHom 𝑥)) |
| 40 | 19, 34, 39 | 3eqtrd 2772 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝐻𝑥) = (𝑥 RngHom 𝑥)) |
| 41 | 9, 17, 40 | 3eltr4d 2848 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∩ cin 3898 I cid 5515 × cxp 5619 ↾ cres 5623 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 Hom chom 17182 Idccid 17581 ExtStrCatcestrc 18038 Rngcrng 20080 RngHom crnghm 20362 RngCatcrngc 20541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-fz 13418 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-hom 17195 df-cco 17196 df-cat 17584 df-cid 17585 df-resc 17728 df-estrc 18039 df-mgm 18558 df-mgmhm 18610 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-ghm 19135 df-abl 19705 df-mgp 20069 df-rng 20081 df-rnghm 20364 df-rngc 20542 |
| This theorem is referenced by: rnghmsubcsetc 20558 |
| Copyright terms: Public domain | W3C validator |