![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > spansnmul | Structured version Visualization version GIF version |
Description: A scalar product with a vector belongs to the span of its singleton. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
spansnmul | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (𝐵 ·ℎ 𝐴) ∈ (span‘{𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spansnsh 31596 | . . . 4 ⊢ (𝐴 ∈ ℋ → (span‘{𝐴}) ∈ Sℋ ) | |
2 | spansnid 31598 | . . . 4 ⊢ (𝐴 ∈ ℋ → 𝐴 ∈ (span‘{𝐴})) | |
3 | 1, 2 | jca 511 | . . 3 ⊢ (𝐴 ∈ ℋ → ((span‘{𝐴}) ∈ Sℋ ∧ 𝐴 ∈ (span‘{𝐴}))) |
4 | shmulcl 31253 | . . . . 5 ⊢ (((span‘{𝐴}) ∈ Sℋ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ (span‘{𝐴})) → (𝐵 ·ℎ 𝐴) ∈ (span‘{𝐴})) | |
5 | 4 | 3com12 1123 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ (span‘{𝐴}) ∈ Sℋ ∧ 𝐴 ∈ (span‘{𝐴})) → (𝐵 ·ℎ 𝐴) ∈ (span‘{𝐴})) |
6 | 5 | 3expb 1120 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ ((span‘{𝐴}) ∈ Sℋ ∧ 𝐴 ∈ (span‘{𝐴}))) → (𝐵 ·ℎ 𝐴) ∈ (span‘{𝐴})) |
7 | 3, 6 | sylan2 592 | . 2 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ℎ 𝐴) ∈ (span‘{𝐴})) |
8 | 7 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (𝐵 ·ℎ 𝐴) ∈ (span‘{𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2103 {csn 4654 ‘cfv 6579 (class class class)co 7454 ℂcc 11187 ℋchba 30954 ·ℎ csm 30956 Sℋ csh 30963 spancspn 30967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5313 ax-sep 5327 ax-nul 5334 ax-pow 5393 ax-pr 5457 ax-un 7775 ax-inf2 9715 ax-cc 10509 ax-cnex 11245 ax-resscn 11246 ax-1cn 11247 ax-icn 11248 ax-addcl 11249 ax-addrcl 11250 ax-mulcl 11251 ax-mulrcl 11252 ax-mulcom 11253 ax-addass 11254 ax-mulass 11255 ax-distr 11256 ax-i2m1 11257 ax-1ne0 11258 ax-1rid 11259 ax-rnegex 11260 ax-rrecex 11261 ax-cnre 11262 ax-pre-lttri 11263 ax-pre-lttrn 11264 ax-pre-ltadd 11265 ax-pre-mulgt0 11266 ax-pre-sup 11267 ax-addf 11268 ax-mulf 11269 ax-hilex 31034 ax-hfvadd 31035 ax-hvcom 31036 ax-hvass 31037 ax-hv0cl 31038 ax-hvaddid 31039 ax-hfvmul 31040 ax-hvmulid 31041 ax-hvmulass 31042 ax-hvdistr1 31043 ax-hvdistr2 31044 ax-hvmul0 31045 ax-hfi 31114 ax-his1 31117 ax-his2 31118 ax-his3 31119 ax-his4 31120 ax-hcompl 31237 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3384 df-reu 3385 df-rab 3440 df-v 3486 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4354 df-if 4555 df-pw 4630 df-sn 4655 df-pr 4657 df-tp 4659 df-op 4661 df-uni 4938 df-int 4979 df-iun 5027 df-iin 5028 df-br 5177 df-opab 5239 df-mpt 5260 df-tr 5294 df-id 5604 df-eprel 5610 df-po 5618 df-so 5619 df-fr 5661 df-se 5662 df-we 5663 df-xp 5712 df-rel 5713 df-cnv 5714 df-co 5715 df-dm 5716 df-rn 5717 df-res 5718 df-ima 5719 df-pred 6338 df-ord 6404 df-on 6405 df-lim 6406 df-suc 6407 df-iota 6531 df-fun 6581 df-fn 6582 df-f 6583 df-f1 6584 df-fo 6585 df-f1o 6586 df-fv 6587 df-isom 6588 df-riota 7410 df-ov 7457 df-oprab 7458 df-mpo 7459 df-of 7719 df-om 7909 df-1st 8035 df-2nd 8036 df-supp 8207 df-frecs 8327 df-wrecs 8358 df-recs 8432 df-rdg 8471 df-1o 8527 df-2o 8528 df-oadd 8531 df-omul 8532 df-er 8768 df-map 8891 df-pm 8892 df-ixp 8961 df-en 9009 df-dom 9010 df-sdom 9011 df-fin 9012 df-fsupp 9437 df-fi 9485 df-sup 9516 df-inf 9517 df-oi 9584 df-card 10013 df-acn 10016 df-pnf 11331 df-mnf 11332 df-xr 11333 df-ltxr 11334 df-le 11335 df-sub 11527 df-neg 11528 df-div 11953 df-nn 12299 df-2 12361 df-3 12362 df-4 12363 df-5 12364 df-6 12365 df-7 12366 df-8 12367 df-9 12368 df-n0 12559 df-z 12645 df-dec 12764 df-uz 12909 df-q 13019 df-rp 13063 df-xneg 13180 df-xadd 13181 df-xmul 13182 df-ioo 13416 df-ico 13418 df-icc 13419 df-fz 13573 df-fzo 13717 df-fl 13848 df-seq 14058 df-exp 14118 df-hash 14385 df-cj 15153 df-re 15154 df-im 15155 df-sqrt 15289 df-abs 15290 df-clim 15539 df-rlim 15540 df-sum 15740 df-struct 17200 df-sets 17217 df-slot 17235 df-ndx 17247 df-base 17265 df-ress 17294 df-plusg 17330 df-mulr 17331 df-starv 17332 df-sca 17333 df-vsca 17334 df-ip 17335 df-tset 17336 df-ple 17337 df-ds 17339 df-unif 17340 df-hom 17341 df-cco 17342 df-rest 17488 df-topn 17489 df-0g 17507 df-gsum 17508 df-topgen 17509 df-pt 17510 df-prds 17513 df-xrs 17568 df-qtop 17573 df-imas 17574 df-xps 17576 df-mre 17650 df-mrc 17651 df-acs 17653 df-mgm 18684 df-sgrp 18763 df-mnd 18779 df-submnd 18825 df-mulg 19114 df-cntz 19363 df-cmn 19830 df-psmet 21385 df-xmet 21386 df-met 21387 df-bl 21388 df-mopn 21389 df-fbas 21390 df-fg 21391 df-cnfld 21394 df-top 22925 df-topon 22942 df-topsp 22964 df-bases 22978 df-cld 23052 df-ntr 23053 df-cls 23054 df-nei 23131 df-cn 23260 df-cnp 23261 df-lm 23262 df-haus 23348 df-tx 23595 df-hmeo 23788 df-fil 23879 df-fm 23971 df-flim 23972 df-flf 23973 df-xms 24355 df-ms 24356 df-tms 24357 df-cfil 25312 df-cau 25313 df-cmet 25314 df-grpo 30528 df-gid 30529 df-ginv 30530 df-gdiv 30531 df-ablo 30580 df-vc 30594 df-nv 30627 df-va 30630 df-ba 30631 df-sm 30632 df-0v 30633 df-vs 30634 df-nmcv 30635 df-ims 30636 df-dip 30736 df-ssp 30757 df-ph 30848 df-cbn 30898 df-hnorm 31003 df-hba 31004 df-hvsub 31006 df-hlim 31007 df-hcau 31008 df-sh 31242 df-ch 31256 df-oc 31287 df-ch0 31288 df-span 31344 |
This theorem is referenced by: spanunsni 31614 |
Copyright terms: Public domain | W3C validator |