![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > spansni | Structured version Visualization version GIF version |
Description: The span of a singleton in Hilbert space equals its closure. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
spansn.1 | ⊢ 𝐴 ∈ ℋ |
Ref | Expression |
---|---|
spansni | ⊢ (span‘{𝐴}) = (⊥‘(⊥‘{𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spansn.1 | . . 3 ⊢ 𝐴 ∈ ℋ | |
2 | snssi 4615 | . . 3 ⊢ (𝐴 ∈ ℋ → {𝐴} ⊆ ℋ) | |
3 | spanssoc 28907 | . . 3 ⊢ ({𝐴} ⊆ ℋ → (span‘{𝐴}) ⊆ (⊥‘(⊥‘{𝐴}))) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ (span‘{𝐴}) ⊆ (⊥‘(⊥‘{𝐴})) |
5 | 1 | elexi 3435 | . . . . . . . . 9 ⊢ 𝐴 ∈ V |
6 | 5 | snss 4592 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑦 ↔ {𝐴} ⊆ 𝑦) |
7 | shmulcl 28774 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Sℋ ∧ 𝑧 ∈ ℂ ∧ 𝐴 ∈ 𝑦) → (𝑧 ·ℎ 𝐴) ∈ 𝑦) | |
8 | 7 | 3expia 1101 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Sℋ ∧ 𝑧 ∈ ℂ) → (𝐴 ∈ 𝑦 → (𝑧 ·ℎ 𝐴) ∈ 𝑦)) |
9 | 8 | ancoms 451 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℂ ∧ 𝑦 ∈ Sℋ ) → (𝐴 ∈ 𝑦 → (𝑧 ·ℎ 𝐴) ∈ 𝑦)) |
10 | 6, 9 | syl5bir 235 | . . . . . . 7 ⊢ ((𝑧 ∈ ℂ ∧ 𝑦 ∈ Sℋ ) → ({𝐴} ⊆ 𝑦 → (𝑧 ·ℎ 𝐴) ∈ 𝑦)) |
11 | eleq1 2854 | . . . . . . . 8 ⊢ (𝑥 = (𝑧 ·ℎ 𝐴) → (𝑥 ∈ 𝑦 ↔ (𝑧 ·ℎ 𝐴) ∈ 𝑦)) | |
12 | 11 | imbi2d 333 | . . . . . . 7 ⊢ (𝑥 = (𝑧 ·ℎ 𝐴) → (({𝐴} ⊆ 𝑦 → 𝑥 ∈ 𝑦) ↔ ({𝐴} ⊆ 𝑦 → (𝑧 ·ℎ 𝐴) ∈ 𝑦))) |
13 | 10, 12 | syl5ibrcom 239 | . . . . . 6 ⊢ ((𝑧 ∈ ℂ ∧ 𝑦 ∈ Sℋ ) → (𝑥 = (𝑧 ·ℎ 𝐴) → ({𝐴} ⊆ 𝑦 → 𝑥 ∈ 𝑦))) |
14 | 13 | ralrimdva 3140 | . . . . 5 ⊢ (𝑧 ∈ ℂ → (𝑥 = (𝑧 ·ℎ 𝐴) → ∀𝑦 ∈ Sℋ ({𝐴} ⊆ 𝑦 → 𝑥 ∈ 𝑦))) |
15 | 14 | rexlimiv 3226 | . . . 4 ⊢ (∃𝑧 ∈ ℂ 𝑥 = (𝑧 ·ℎ 𝐴) → ∀𝑦 ∈ Sℋ ({𝐴} ⊆ 𝑦 → 𝑥 ∈ 𝑦)) |
16 | 1 | h1de2ci 29114 | . . . 4 ⊢ (𝑥 ∈ (⊥‘(⊥‘{𝐴})) ↔ ∃𝑧 ∈ ℂ 𝑥 = (𝑧 ·ℎ 𝐴)) |
17 | vex 3419 | . . . . . 6 ⊢ 𝑥 ∈ V | |
18 | 17 | elspani 29101 | . . . . 5 ⊢ ({𝐴} ⊆ ℋ → (𝑥 ∈ (span‘{𝐴}) ↔ ∀𝑦 ∈ Sℋ ({𝐴} ⊆ 𝑦 → 𝑥 ∈ 𝑦))) |
19 | 1, 2, 18 | mp2b 10 | . . . 4 ⊢ (𝑥 ∈ (span‘{𝐴}) ↔ ∀𝑦 ∈ Sℋ ({𝐴} ⊆ 𝑦 → 𝑥 ∈ 𝑦)) |
20 | 15, 16, 19 | 3imtr4i 284 | . . 3 ⊢ (𝑥 ∈ (⊥‘(⊥‘{𝐴})) → 𝑥 ∈ (span‘{𝐴})) |
21 | 20 | ssriv 3863 | . 2 ⊢ (⊥‘(⊥‘{𝐴})) ⊆ (span‘{𝐴}) |
22 | 4, 21 | eqssi 3875 | 1 ⊢ (span‘{𝐴}) = (⊥‘(⊥‘{𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∀wral 3089 ∃wrex 3090 ⊆ wss 3830 {csn 4441 ‘cfv 6188 (class class class)co 6976 ℂcc 10333 ℋchba 28475 ·ℎ csm 28477 Sℋ csh 28484 ⊥cort 28486 spancspn 28488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-inf2 8898 ax-cc 9655 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 ax-addf 10414 ax-mulf 10415 ax-hilex 28555 ax-hfvadd 28556 ax-hvcom 28557 ax-hvass 28558 ax-hv0cl 28559 ax-hvaddid 28560 ax-hfvmul 28561 ax-hvmulid 28562 ax-hvmulass 28563 ax-hvdistr1 28564 ax-hvdistr2 28565 ax-hvmul0 28566 ax-hfi 28635 ax-his1 28638 ax-his2 28639 ax-his3 28640 ax-his4 28641 ax-hcompl 28758 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-of 7227 df-om 7397 df-1st 7501 df-2nd 7502 df-supp 7634 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-omul 7910 df-er 8089 df-map 8208 df-pm 8209 df-ixp 8260 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-fsupp 8629 df-fi 8670 df-sup 8701 df-inf 8702 df-oi 8769 df-card 9162 df-acn 9165 df-cda 9388 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 df-z 11794 df-dec 11912 df-uz 12059 df-q 12163 df-rp 12205 df-xneg 12324 df-xadd 12325 df-xmul 12326 df-ioo 12558 df-ico 12560 df-icc 12561 df-fz 12709 df-fzo 12850 df-fl 12977 df-seq 13185 df-exp 13245 df-hash 13506 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-clim 14706 df-rlim 14707 df-sum 14904 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-mulr 16435 df-starv 16436 df-sca 16437 df-vsca 16438 df-ip 16439 df-tset 16440 df-ple 16441 df-ds 16443 df-unif 16444 df-hom 16445 df-cco 16446 df-rest 16552 df-topn 16553 df-0g 16571 df-gsum 16572 df-topgen 16573 df-pt 16574 df-prds 16577 df-xrs 16631 df-qtop 16636 df-imas 16637 df-xps 16639 df-mre 16715 df-mrc 16716 df-acs 16718 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-submnd 17804 df-mulg 18012 df-cntz 18218 df-cmn 18668 df-psmet 20239 df-xmet 20240 df-met 20241 df-bl 20242 df-mopn 20243 df-fbas 20244 df-fg 20245 df-cnfld 20248 df-top 21206 df-topon 21223 df-topsp 21245 df-bases 21258 df-cld 21331 df-ntr 21332 df-cls 21333 df-nei 21410 df-cn 21539 df-cnp 21540 df-lm 21541 df-haus 21627 df-tx 21874 df-hmeo 22067 df-fil 22158 df-fm 22250 df-flim 22251 df-flf 22252 df-xms 22633 df-ms 22634 df-tms 22635 df-cfil 23561 df-cau 23562 df-cmet 23563 df-grpo 28047 df-gid 28048 df-ginv 28049 df-gdiv 28050 df-ablo 28099 df-vc 28113 df-nv 28146 df-va 28149 df-ba 28150 df-sm 28151 df-0v 28152 df-vs 28153 df-nmcv 28154 df-ims 28155 df-dip 28255 df-ssp 28276 df-ph 28367 df-cbn 28418 df-hnorm 28524 df-hba 28525 df-hvsub 28527 df-hlim 28528 df-hcau 28529 df-sh 28763 df-ch 28777 df-oc 28808 df-ch0 28809 df-span 28867 |
This theorem is referenced by: elspansni 29116 spansn 29117 |
Copyright terms: Public domain | W3C validator |