| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slerecd | Structured version Visualization version GIF version | ||
| Description: A comparison law for surreals considered as cuts of sets of surreals. Definition from [Conway] p. 4. Theorem 4 of [Alling] p. 186. Theorem 2.5 of [Gonshor] p. 9. (Contributed by Scott Fenton, 5-Dec-2025.) |
| Ref | Expression |
|---|---|
| slerecd.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| slerecd.2 | ⊢ (𝜑 → 𝐶 <<s 𝐷) |
| slerecd.3 | ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) |
| slerecd.4 | ⊢ (𝜑 → 𝑌 = (𝐶 |s 𝐷)) |
| Ref | Expression |
|---|---|
| slerecd | ⊢ (𝜑 → (𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slerecd.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
| 2 | slerecd.2 | . 2 ⊢ (𝜑 → 𝐶 <<s 𝐷) | |
| 3 | slerecd.3 | . 2 ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) | |
| 4 | slerecd.4 | . 2 ⊢ (𝜑 → 𝑌 = (𝐶 |s 𝐷)) | |
| 5 | slerec 27760 | . 2 ⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌))) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → (𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∀wral 3047 class class class wbr 5089 (class class class)co 7346 <s cslt 27579 ≤s csle 27683 <<s csslt 27720 |s cscut 27722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1o 8385 df-2o 8386 df-no 27581 df-slt 27582 df-bday 27583 df-sle 27684 df-sslt 27721 df-scut 27723 |
| This theorem is referenced by: sltrec 27762 eqscut3 27765 rightpos 27782 |
| Copyright terms: Public domain | W3C validator |