| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slerecd | Structured version Visualization version GIF version | ||
| Description: A comparison law for surreals considered as cuts of sets of surreals. Definition from [Conway] p. 4. Theorem 4 of [Alling] p. 186. Theorem 2.5 of [Gonshor] p. 9. (Contributed by Scott Fenton, 5-Dec-2025.) |
| Ref | Expression |
|---|---|
| slerecd.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| slerecd.2 | ⊢ (𝜑 → 𝐶 <<s 𝐷) |
| slerecd.3 | ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) |
| slerecd.4 | ⊢ (𝜑 → 𝑌 = (𝐶 |s 𝐷)) |
| Ref | Expression |
|---|---|
| slerecd | ⊢ (𝜑 → (𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slerecd.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
| 2 | slerecd.2 | . 2 ⊢ (𝜑 → 𝐶 <<s 𝐷) | |
| 3 | slerecd.3 | . 2 ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) | |
| 4 | slerecd.4 | . 2 ⊢ (𝜑 → 𝑌 = (𝐶 |s 𝐷)) | |
| 5 | slerec 27730 | . 2 ⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌))) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → (𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3044 class class class wbr 5092 (class class class)co 7349 <s cslt 27550 ≤s csle 27654 <<s csslt 27691 |s cscut 27693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1o 8388 df-2o 8389 df-no 27552 df-slt 27553 df-bday 27554 df-sle 27655 df-sslt 27692 df-scut 27694 |
| This theorem is referenced by: sltrec 27732 eqscut3 27735 |
| Copyright terms: Public domain | W3C validator |