![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-addlt0d | Structured version Visualization version GIF version |
Description: The sum of negative numbers is negative. (Contributed by SN, 25-Jan-2025.) |
Ref | Expression |
---|---|
sn-addlt0d.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
sn-addlt0d.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
sn-addlt0d.1 | ⊢ (𝜑 → 𝐴 < 0) |
sn-addlt0d.2 | ⊢ (𝜑 → 𝐵 < 0) |
Ref | Expression |
---|---|
sn-addlt0d | ⊢ (𝜑 → (𝐴 + 𝐵) < 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn-addlt0d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | sn-addlt0d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1, 2 | readdcld 11288 | . 2 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
4 | 0red 11262 | . 2 ⊢ (𝜑 → 0 ∈ ℝ) | |
5 | sn-addlt0d.2 | . . 3 ⊢ (𝜑 → 𝐵 < 0) | |
6 | sn-ltaddneg 42449 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 0 ↔ (𝐴 + 𝐵) < 𝐴)) | |
7 | 2, 1, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵 < 0 ↔ (𝐴 + 𝐵) < 𝐴)) |
8 | 5, 7 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐴 + 𝐵) < 𝐴) |
9 | sn-addlt0d.1 | . 2 ⊢ (𝜑 → 𝐴 < 0) | |
10 | 3, 1, 4, 8, 9 | lttrd 11420 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) < 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 0cc0 11153 + caddc 11156 < clt 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-2 12327 df-3 12328 df-resub 42373 |
This theorem is referenced by: sn-nnne0 42455 |
Copyright terms: Public domain | W3C validator |