Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > starvndx | Structured version Visualization version GIF version |
Description: Index value of the df-starv 16987 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
starvndx | ⊢ (*𝑟‘ndx) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-starv 16987 | . 2 ⊢ *𝑟 = Slot 4 | |
2 | 4nn 12066 | . 2 ⊢ 4 ∈ ℕ | |
3 | 1, 2 | ndxarg 16907 | 1 ⊢ (*𝑟‘ndx) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ‘cfv 6426 4c4 12040 ndxcnx 16904 *𝑟cstv 16974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-1cn 10939 ax-addcl 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-ov 7270 df-om 7703 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-slot 16893 df-ndx 16905 df-starv 16987 |
This theorem is referenced by: starvndxnbasendx 17024 starvndxnplusgndx 17025 starvndxnmulrndx 17026 srngstr 17029 tsetndxnstarvndx 17079 slotsdifplendx 17095 slotsdifdsndx 17114 slotsdifunifndx 17121 cnfldfunALTOLD 20621 hlhilslemOLD 39961 |
Copyright terms: Public domain | W3C validator |