Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of hlhilslem 39858 as of 6-Nov-2024. Lemma for hlhilsbase 39860. (Contributed by Mario Carneiro, 28-Jun-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
hlhilslem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhilslem.e | ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) |
hlhilslem.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhilslem.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hlhilslem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hlhilslemOLD.f | ⊢ 𝐹 = Slot 𝑁 |
hlhilslemOLD.1 | ⊢ 𝑁 ∈ ℕ |
hlhilslemOLD.2 | ⊢ 𝑁 < 4 |
hlhilslemOLD.c | ⊢ 𝐶 = (𝐹‘𝐸) |
Ref | Expression |
---|---|
hlhilslemOLD | ⊢ (𝜑 → 𝐶 = (𝐹‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilslemOLD.c | . . 3 ⊢ 𝐶 = (𝐹‘𝐸) | |
2 | hlhilslemOLD.f | . . . . 5 ⊢ 𝐹 = Slot 𝑁 | |
3 | hlhilslemOLD.1 | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
4 | 2, 3 | ndxid 16801 | . . . 4 ⊢ 𝐹 = Slot (𝐹‘ndx) |
5 | 3 | nnrei 11887 | . . . . . 6 ⊢ 𝑁 ∈ ℝ |
6 | hlhilslemOLD.2 | . . . . . 6 ⊢ 𝑁 < 4 | |
7 | 5, 6 | ltneii 10993 | . . . . 5 ⊢ 𝑁 ≠ 4 |
8 | 2, 3 | ndxarg 16800 | . . . . . 6 ⊢ (𝐹‘ndx) = 𝑁 |
9 | starvndx 16913 | . . . . . 6 ⊢ (*𝑟‘ndx) = 4 | |
10 | 8, 9 | neeq12i 3010 | . . . . 5 ⊢ ((𝐹‘ndx) ≠ (*𝑟‘ndx) ↔ 𝑁 ≠ 4) |
11 | 7, 10 | mpbir 234 | . . . 4 ⊢ (𝐹‘ndx) ≠ (*𝑟‘ndx) |
12 | 4, 11 | setsnid 16813 | . . 3 ⊢ (𝐹‘𝐸) = (𝐹‘(𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)) |
13 | 1, 12 | eqtri 2767 | . 2 ⊢ 𝐶 = (𝐹‘(𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)) |
14 | hlhilslem.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
15 | hlhilslem.u | . . . . 5 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
16 | hlhilslem.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
17 | hlhilslem.e | . . . . 5 ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) | |
18 | eqid 2739 | . . . . 5 ⊢ ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊) | |
19 | eqid 2739 | . . . . 5 ⊢ (𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = (𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) | |
20 | 14, 15, 16, 17, 18, 19 | hlhilsca 39855 | . . . 4 ⊢ (𝜑 → (𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = (Scalar‘𝑈)) |
21 | hlhilslem.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
22 | 20, 21 | eqtr4di 2798 | . . 3 ⊢ (𝜑 → (𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = 𝑅) |
23 | 22 | fveq2d 6757 | . 2 ⊢ (𝜑 → (𝐹‘(𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)) = (𝐹‘𝑅)) |
24 | 13, 23 | syl5eq 2792 | 1 ⊢ (𝜑 → 𝐶 = (𝐹‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 〈cop 4564 class class class wbr 5070 ‘cfv 6415 (class class class)co 7252 < clt 10915 ℕcn 11878 4c4 11935 sSet csts 16767 Slot cslot 16785 ndxcnx 16797 *𝑟cstv 16865 Scalarcsca 16866 HLchlt 37270 LHypclh 37904 EDRingcedring 38673 HGMapchg 39803 HLHilchlh 39852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-n0 12139 df-z 12225 df-uz 12487 df-fz 13144 df-struct 16751 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-plusg 16876 df-starv 16878 df-sca 16879 df-vsca 16880 df-ip 16881 df-hlhil 39853 |
This theorem is referenced by: hlhilsbaseOLD 39861 hlhilsplusOLD 39863 hlhilsmulOLD 39865 |
Copyright terms: Public domain | W3C validator |