![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of hlhilslem 40404 as of 6-Nov-2024. Lemma for hlhilsbase 40406. (Contributed by Mario Carneiro, 28-Jun-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
hlhilslem.h | β’ π» = (LHypβπΎ) |
hlhilslem.e | β’ πΈ = ((EDRingβπΎ)βπ) |
hlhilslem.u | β’ π = ((HLHilβπΎ)βπ) |
hlhilslem.r | β’ π = (Scalarβπ) |
hlhilslem.k | β’ (π β (πΎ β HL β§ π β π»)) |
hlhilslemOLD.f | β’ πΉ = Slot π |
hlhilslemOLD.1 | β’ π β β |
hlhilslemOLD.2 | β’ π < 4 |
hlhilslemOLD.c | β’ πΆ = (πΉβπΈ) |
Ref | Expression |
---|---|
hlhilslemOLD | β’ (π β πΆ = (πΉβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilslemOLD.c | . . 3 β’ πΆ = (πΉβπΈ) | |
2 | hlhilslemOLD.f | . . . . 5 β’ πΉ = Slot π | |
3 | hlhilslemOLD.1 | . . . . 5 β’ π β β | |
4 | 2, 3 | ndxid 17070 | . . . 4 β’ πΉ = Slot (πΉβndx) |
5 | 3 | nnrei 12163 | . . . . . 6 β’ π β β |
6 | hlhilslemOLD.2 | . . . . . 6 β’ π < 4 | |
7 | 5, 6 | ltneii 11269 | . . . . 5 β’ π β 4 |
8 | 2, 3 | ndxarg 17069 | . . . . . 6 β’ (πΉβndx) = π |
9 | starvndx 17184 | . . . . . 6 β’ (*πβndx) = 4 | |
10 | 8, 9 | neeq12i 3011 | . . . . 5 β’ ((πΉβndx) β (*πβndx) β π β 4) |
11 | 7, 10 | mpbir 230 | . . . 4 β’ (πΉβndx) β (*πβndx) |
12 | 4, 11 | setsnid 17082 | . . 3 β’ (πΉβπΈ) = (πΉβ(πΈ sSet β¨(*πβndx), ((HGMapβπΎ)βπ)β©)) |
13 | 1, 12 | eqtri 2765 | . 2 β’ πΆ = (πΉβ(πΈ sSet β¨(*πβndx), ((HGMapβπΎ)βπ)β©)) |
14 | hlhilslem.h | . . . . 5 β’ π» = (LHypβπΎ) | |
15 | hlhilslem.u | . . . . 5 β’ π = ((HLHilβπΎ)βπ) | |
16 | hlhilslem.k | . . . . 5 β’ (π β (πΎ β HL β§ π β π»)) | |
17 | hlhilslem.e | . . . . 5 β’ πΈ = ((EDRingβπΎ)βπ) | |
18 | eqid 2737 | . . . . 5 β’ ((HGMapβπΎ)βπ) = ((HGMapβπΎ)βπ) | |
19 | eqid 2737 | . . . . 5 β’ (πΈ sSet β¨(*πβndx), ((HGMapβπΎ)βπ)β©) = (πΈ sSet β¨(*πβndx), ((HGMapβπΎ)βπ)β©) | |
20 | 14, 15, 16, 17, 18, 19 | hlhilsca 40401 | . . . 4 β’ (π β (πΈ sSet β¨(*πβndx), ((HGMapβπΎ)βπ)β©) = (Scalarβπ)) |
21 | hlhilslem.r | . . . 4 β’ π = (Scalarβπ) | |
22 | 20, 21 | eqtr4di 2795 | . . 3 β’ (π β (πΈ sSet β¨(*πβndx), ((HGMapβπΎ)βπ)β©) = π ) |
23 | 22 | fveq2d 6847 | . 2 β’ (π β (πΉβ(πΈ sSet β¨(*πβndx), ((HGMapβπΎ)βπ)β©)) = (πΉβπ )) |
24 | 13, 23 | eqtrid 2789 | 1 β’ (π β πΆ = (πΉβπ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2944 β¨cop 4593 class class class wbr 5106 βcfv 6497 (class class class)co 7358 < clt 11190 βcn 12154 4c4 12211 sSet csts 17036 Slot cslot 17054 ndxcnx 17066 *πcstv 17136 Scalarcsca 17137 HLchlt 37815 LHypclh 38450 EDRingcedring 39219 HGMapchg 40349 HLHilchlh 40398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-fin 8888 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-nn 12155 df-2 12217 df-3 12218 df-4 12219 df-5 12220 df-6 12221 df-7 12222 df-8 12223 df-n0 12415 df-z 12501 df-uz 12765 df-fz 13426 df-struct 17020 df-sets 17037 df-slot 17055 df-ndx 17067 df-base 17085 df-plusg 17147 df-starv 17149 df-sca 17150 df-vsca 17151 df-ip 17152 df-hlhil 40399 |
This theorem is referenced by: hlhilsbaseOLD 40407 hlhilsplusOLD 40409 hlhilsmulOLD 40411 |
Copyright terms: Public domain | W3C validator |