![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of hlhilslem 41639 as of 6-Nov-2024. Lemma for hlhilsbase 41641. (Contributed by Mario Carneiro, 28-Jun-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
hlhilslem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhilslem.e | ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) |
hlhilslem.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhilslem.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hlhilslem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hlhilslemOLD.f | ⊢ 𝐹 = Slot 𝑁 |
hlhilslemOLD.1 | ⊢ 𝑁 ∈ ℕ |
hlhilslemOLD.2 | ⊢ 𝑁 < 4 |
hlhilslemOLD.c | ⊢ 𝐶 = (𝐹‘𝐸) |
Ref | Expression |
---|---|
hlhilslemOLD | ⊢ (𝜑 → 𝐶 = (𝐹‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilslemOLD.c | . . 3 ⊢ 𝐶 = (𝐹‘𝐸) | |
2 | hlhilslemOLD.f | . . . . 5 ⊢ 𝐹 = Slot 𝑁 | |
3 | hlhilslemOLD.1 | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
4 | 2, 3 | ndxid 17201 | . . . 4 ⊢ 𝐹 = Slot (𝐹‘ndx) |
5 | 3 | nnrei 12275 | . . . . . 6 ⊢ 𝑁 ∈ ℝ |
6 | hlhilslemOLD.2 | . . . . . 6 ⊢ 𝑁 < 4 | |
7 | 5, 6 | ltneii 11379 | . . . . 5 ⊢ 𝑁 ≠ 4 |
8 | 2, 3 | ndxarg 17200 | . . . . . 6 ⊢ (𝐹‘ndx) = 𝑁 |
9 | starvndx 17318 | . . . . . 6 ⊢ (*𝑟‘ndx) = 4 | |
10 | 8, 9 | neeq12i 2997 | . . . . 5 ⊢ ((𝐹‘ndx) ≠ (*𝑟‘ndx) ↔ 𝑁 ≠ 4) |
11 | 7, 10 | mpbir 230 | . . . 4 ⊢ (𝐹‘ndx) ≠ (*𝑟‘ndx) |
12 | 4, 11 | setsnid 17213 | . . 3 ⊢ (𝐹‘𝐸) = (𝐹‘(𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)) |
13 | 1, 12 | eqtri 2754 | . 2 ⊢ 𝐶 = (𝐹‘(𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)) |
14 | hlhilslem.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
15 | hlhilslem.u | . . . . 5 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
16 | hlhilslem.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
17 | hlhilslem.e | . . . . 5 ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) | |
18 | eqid 2726 | . . . . 5 ⊢ ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊) | |
19 | eqid 2726 | . . . . 5 ⊢ (𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = (𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) | |
20 | 14, 15, 16, 17, 18, 19 | hlhilsca 41636 | . . . 4 ⊢ (𝜑 → (𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = (Scalar‘𝑈)) |
21 | hlhilslem.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
22 | 20, 21 | eqtr4di 2784 | . . 3 ⊢ (𝜑 → (𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = 𝑅) |
23 | 22 | fveq2d 6907 | . 2 ⊢ (𝜑 → (𝐹‘(𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)) = (𝐹‘𝑅)) |
24 | 13, 23 | eqtrid 2778 | 1 ⊢ (𝜑 → 𝐶 = (𝐹‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 〈cop 4639 class class class wbr 5155 ‘cfv 6556 (class class class)co 7426 < clt 11300 ℕcn 12266 4c4 12323 sSet csts 17167 Slot cslot 17185 ndxcnx 17197 *𝑟cstv 17270 Scalarcsca 17271 HLchlt 39050 LHypclh 39685 EDRingcedring 40454 HGMapchg 41584 HLHilchlh 41633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8005 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-1o 8498 df-er 8736 df-en 8977 df-dom 8978 df-sdom 8979 df-fin 8980 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-n0 12527 df-z 12613 df-uz 12877 df-fz 13541 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17216 df-plusg 17281 df-starv 17283 df-sca 17284 df-vsca 17285 df-ip 17286 df-hlhil 41634 |
This theorem is referenced by: hlhilsbaseOLD 41642 hlhilsplusOLD 41644 hlhilsmulOLD 41646 |
Copyright terms: Public domain | W3C validator |