Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of hlhilslem 40206 as of 6-Nov-2024. Lemma for hlhilsbase 40208. (Contributed by Mario Carneiro, 28-Jun-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
hlhilslem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhilslem.e | ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) |
hlhilslem.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhilslem.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hlhilslem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hlhilslemOLD.f | ⊢ 𝐹 = Slot 𝑁 |
hlhilslemOLD.1 | ⊢ 𝑁 ∈ ℕ |
hlhilslemOLD.2 | ⊢ 𝑁 < 4 |
hlhilslemOLD.c | ⊢ 𝐶 = (𝐹‘𝐸) |
Ref | Expression |
---|---|
hlhilslemOLD | ⊢ (𝜑 → 𝐶 = (𝐹‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilslemOLD.c | . . 3 ⊢ 𝐶 = (𝐹‘𝐸) | |
2 | hlhilslemOLD.f | . . . . 5 ⊢ 𝐹 = Slot 𝑁 | |
3 | hlhilslemOLD.1 | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
4 | 2, 3 | ndxid 16995 | . . . 4 ⊢ 𝐹 = Slot (𝐹‘ndx) |
5 | 3 | nnrei 12083 | . . . . . 6 ⊢ 𝑁 ∈ ℝ |
6 | hlhilslemOLD.2 | . . . . . 6 ⊢ 𝑁 < 4 | |
7 | 5, 6 | ltneii 11189 | . . . . 5 ⊢ 𝑁 ≠ 4 |
8 | 2, 3 | ndxarg 16994 | . . . . . 6 ⊢ (𝐹‘ndx) = 𝑁 |
9 | starvndx 17109 | . . . . . 6 ⊢ (*𝑟‘ndx) = 4 | |
10 | 8, 9 | neeq12i 3007 | . . . . 5 ⊢ ((𝐹‘ndx) ≠ (*𝑟‘ndx) ↔ 𝑁 ≠ 4) |
11 | 7, 10 | mpbir 230 | . . . 4 ⊢ (𝐹‘ndx) ≠ (*𝑟‘ndx) |
12 | 4, 11 | setsnid 17007 | . . 3 ⊢ (𝐹‘𝐸) = (𝐹‘(𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)) |
13 | 1, 12 | eqtri 2764 | . 2 ⊢ 𝐶 = (𝐹‘(𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)) |
14 | hlhilslem.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
15 | hlhilslem.u | . . . . 5 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
16 | hlhilslem.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
17 | hlhilslem.e | . . . . 5 ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) | |
18 | eqid 2736 | . . . . 5 ⊢ ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊) | |
19 | eqid 2736 | . . . . 5 ⊢ (𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = (𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) | |
20 | 14, 15, 16, 17, 18, 19 | hlhilsca 40203 | . . . 4 ⊢ (𝜑 → (𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = (Scalar‘𝑈)) |
21 | hlhilslem.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
22 | 20, 21 | eqtr4di 2794 | . . 3 ⊢ (𝜑 → (𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = 𝑅) |
23 | 22 | fveq2d 6829 | . 2 ⊢ (𝜑 → (𝐹‘(𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)) = (𝐹‘𝑅)) |
24 | 13, 23 | eqtrid 2788 | 1 ⊢ (𝜑 → 𝐶 = (𝐹‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 〈cop 4579 class class class wbr 5092 ‘cfv 6479 (class class class)co 7337 < clt 11110 ℕcn 12074 4c4 12131 sSet csts 16961 Slot cslot 16979 ndxcnx 16991 *𝑟cstv 17061 Scalarcsca 17062 HLchlt 37617 LHypclh 38252 EDRingcedring 39021 HGMapchg 40151 HLHilchlh 40200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-plusg 17072 df-starv 17074 df-sca 17075 df-vsca 17076 df-ip 17077 df-hlhil 40201 |
This theorem is referenced by: hlhilsbaseOLD 40209 hlhilsplusOLD 40211 hlhilsmulOLD 40213 |
Copyright terms: Public domain | W3C validator |