Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submuladdd Structured version   Visualization version   GIF version

Theorem submuladdd 32683
Description: The product of a difference and a sum. Cf. addmulsub 11582. (Contributed by Thierry Arnoux, 6-Jul-2025.)
Hypotheses
Ref Expression
submuladdd.1 (𝜑𝐴 ∈ ℂ)
submuladdd.2 (𝜑𝐵 ∈ ℂ)
submuladdd.3 (𝜑𝐶 ∈ ℂ)
submuladdd.4 (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
submuladdd (𝜑 → ((𝐴𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐴 · 𝐷)) − ((𝐵 · 𝐶) + (𝐵 · 𝐷))))

Proof of Theorem submuladdd
StepHypRef Expression
1 submuladdd.1 . . . 4 (𝜑𝐴 ∈ ℂ)
2 submuladdd.2 . . . 4 (𝜑𝐵 ∈ ℂ)
31, 2subcld 11475 . . 3 (𝜑 → (𝐴𝐵) ∈ ℂ)
4 submuladdd.3 . . . 4 (𝜑𝐶 ∈ ℂ)
5 submuladdd.4 . . . 4 (𝜑𝐷 ∈ ℂ)
64, 5addcld 11134 . . 3 (𝜑 → (𝐶 + 𝐷) ∈ ℂ)
73, 6mulcomd 11136 . 2 (𝜑 → ((𝐴𝐵) · (𝐶 + 𝐷)) = ((𝐶 + 𝐷) · (𝐴𝐵)))
8 addmulsub 11582 . . 3 (((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝐶 + 𝐷) · (𝐴𝐵)) = (((𝐶 · 𝐴) + (𝐷 · 𝐴)) − ((𝐶 · 𝐵) + (𝐷 · 𝐵))))
94, 5, 1, 2, 8syl22anc 838 . 2 (𝜑 → ((𝐶 + 𝐷) · (𝐴𝐵)) = (((𝐶 · 𝐴) + (𝐷 · 𝐴)) − ((𝐶 · 𝐵) + (𝐷 · 𝐵))))
104, 1mulcomd 11136 . . . 4 (𝜑 → (𝐶 · 𝐴) = (𝐴 · 𝐶))
115, 1mulcomd 11136 . . . 4 (𝜑 → (𝐷 · 𝐴) = (𝐴 · 𝐷))
1210, 11oveq12d 7367 . . 3 (𝜑 → ((𝐶 · 𝐴) + (𝐷 · 𝐴)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷)))
134, 2mulcomd 11136 . . . 4 (𝜑 → (𝐶 · 𝐵) = (𝐵 · 𝐶))
145, 2mulcomd 11136 . . . 4 (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷))
1513, 14oveq12d 7367 . . 3 (𝜑 → ((𝐶 · 𝐵) + (𝐷 · 𝐵)) = ((𝐵 · 𝐶) + (𝐵 · 𝐷)))
1612, 15oveq12d 7367 . 2 (𝜑 → (((𝐶 · 𝐴) + (𝐷 · 𝐴)) − ((𝐶 · 𝐵) + (𝐷 · 𝐵))) = (((𝐴 · 𝐶) + (𝐴 · 𝐷)) − ((𝐵 · 𝐶) + (𝐵 · 𝐷))))
177, 9, 163eqtrd 2768 1 (𝜑 → ((𝐴𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐴 · 𝐷)) − ((𝐵 · 𝐶) + (𝐵 · 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7349  cc 11007   + caddc 11012   · cmul 11014  cmin 11347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-sub 11349
This theorem is referenced by:  constrrtlc1  33699
  Copyright terms: Public domain W3C validator