| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > submuladdd | Structured version Visualization version GIF version | ||
| Description: The product of a difference and a sum. Cf. addmulsub 11582. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| Ref | Expression |
|---|---|
| submuladdd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| submuladdd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| submuladdd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| submuladdd.4 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| Ref | Expression |
|---|---|
| submuladdd | ⊢ (𝜑 → ((𝐴 − 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐴 · 𝐷)) − ((𝐵 · 𝐶) + (𝐵 · 𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submuladdd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | submuladdd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | 1, 2 | subcld 11475 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| 4 | submuladdd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 5 | submuladdd.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 6 | 4, 5 | addcld 11134 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ ℂ) |
| 7 | 3, 6 | mulcomd 11136 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) · (𝐶 + 𝐷)) = ((𝐶 + 𝐷) · (𝐴 − 𝐵))) |
| 8 | addmulsub 11582 | . . 3 ⊢ (((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝐶 + 𝐷) · (𝐴 − 𝐵)) = (((𝐶 · 𝐴) + (𝐷 · 𝐴)) − ((𝐶 · 𝐵) + (𝐷 · 𝐵)))) | |
| 9 | 4, 5, 1, 2, 8 | syl22anc 838 | . 2 ⊢ (𝜑 → ((𝐶 + 𝐷) · (𝐴 − 𝐵)) = (((𝐶 · 𝐴) + (𝐷 · 𝐴)) − ((𝐶 · 𝐵) + (𝐷 · 𝐵)))) |
| 10 | 4, 1 | mulcomd 11136 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝐴) = (𝐴 · 𝐶)) |
| 11 | 5, 1 | mulcomd 11136 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝐴) = (𝐴 · 𝐷)) |
| 12 | 10, 11 | oveq12d 7367 | . . 3 ⊢ (𝜑 → ((𝐶 · 𝐴) + (𝐷 · 𝐴)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷))) |
| 13 | 4, 2 | mulcomd 11136 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝐵) = (𝐵 · 𝐶)) |
| 14 | 5, 2 | mulcomd 11136 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷)) |
| 15 | 13, 14 | oveq12d 7367 | . . 3 ⊢ (𝜑 → ((𝐶 · 𝐵) + (𝐷 · 𝐵)) = ((𝐵 · 𝐶) + (𝐵 · 𝐷))) |
| 16 | 12, 15 | oveq12d 7367 | . 2 ⊢ (𝜑 → (((𝐶 · 𝐴) + (𝐷 · 𝐴)) − ((𝐶 · 𝐵) + (𝐷 · 𝐵))) = (((𝐴 · 𝐶) + (𝐴 · 𝐷)) − ((𝐵 · 𝐶) + (𝐵 · 𝐷)))) |
| 17 | 7, 9, 16 | 3eqtrd 2768 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐴 · 𝐷)) − ((𝐵 · 𝐶) + (𝐵 · 𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 + caddc 11012 · cmul 11014 − cmin 11347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 |
| This theorem is referenced by: constrrtlc1 33699 |
| Copyright terms: Public domain | W3C validator |