MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difelfzle Structured version   Visualization version   GIF version

Theorem difelfzle 13668
Description: The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
Assertion
Ref Expression
difelfzle ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ (0...𝑁))

Proof of Theorem difelfzle
StepHypRef Expression
1 elfznn0 13648 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
2 elfznn0 13648 . . . . 5 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
3 nn0z 12635 . . . . . . . . 9 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
4 nn0z 12635 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
5 zsubcl 12656 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾) ∈ ℤ)
63, 4, 5syl2anr 595 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀𝐾) ∈ ℤ)
76adantr 479 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ ℤ)
8 nn0re 12533 . . . . . . . . 9 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
9 nn0re 12533 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
10 subge0 11777 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ (𝑀𝐾) ↔ 𝐾𝑀))
118, 9, 10syl2anr 595 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (0 ≤ (𝑀𝐾) ↔ 𝐾𝑀))
1211biimpar 476 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝐾𝑀) → 0 ≤ (𝑀𝐾))
137, 12jca 510 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝐾𝑀) → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))
1413exp31 418 . . . . 5 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾𝑀 → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))))
151, 2, 14syl2im 40 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑀 ∈ (0...𝑁) → (𝐾𝑀 → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))))
16153imp 1108 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))
17 elnn0z 12623 . . 3 ((𝑀𝐾) ∈ ℕ0 ↔ ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))
1816, 17sylibr 233 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ ℕ0)
19 elfz3nn0 13649 . . 3 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
20193ad2ant1 1130 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → 𝑁 ∈ ℕ0)
21 elfz2nn0 13646 . . . . . 6 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
2283ad2ant1 1130 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℝ)
23 resubcl 11574 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀𝐾) ∈ ℝ)
2422, 9, 23syl2an 594 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾) ∈ ℝ)
2522adantr 479 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 𝑀 ∈ ℝ)
26 nn0re 12533 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
27263ad2ant2 1131 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → 𝑁 ∈ ℝ)
2827adantr 479 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℝ)
29 nn0ge0 12549 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
3029adantl 480 . . . . . . . . 9 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 0 ≤ 𝐾)
31 subge02 11780 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ (𝑀𝐾) ≤ 𝑀))
3222, 9, 31syl2an 594 . . . . . . . . 9 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (0 ≤ 𝐾 ↔ (𝑀𝐾) ≤ 𝑀))
3330, 32mpbid 231 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾) ≤ 𝑀)
34 simpl3 1190 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 𝑀𝑁)
3524, 25, 28, 33, 34letrd 11421 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾) ≤ 𝑁)
3635ex 411 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐾 ∈ ℕ0 → (𝑀𝐾) ≤ 𝑁))
3721, 36sylbi 216 . . . . 5 (𝑀 ∈ (0...𝑁) → (𝐾 ∈ ℕ0 → (𝑀𝐾) ≤ 𝑁))
381, 37syl5com 31 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑀 ∈ (0...𝑁) → (𝑀𝐾) ≤ 𝑁))
3938a1dd 50 . . 3 (𝐾 ∈ (0...𝑁) → (𝑀 ∈ (0...𝑁) → (𝐾𝑀 → (𝑀𝐾) ≤ 𝑁)))
40393imp 1108 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ≤ 𝑁)
41 elfz2nn0 13646 . 2 ((𝑀𝐾) ∈ (0...𝑁) ↔ ((𝑀𝐾) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑀𝐾) ≤ 𝑁))
4218, 20, 40, 41syl3anbrc 1340 1 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ (0...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084  wcel 2099   class class class wbr 5153  (class class class)co 7424  cr 11157  0cc0 11158  cle 11299  cmin 11494  0cn0 12524  cz 12610  ...cfz 13538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539
This theorem is referenced by:  2cshwcshw  14834
  Copyright terms: Public domain W3C validator