MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difelfzle Structured version   Visualization version   GIF version

Theorem difelfzle 13369
Description: The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
Assertion
Ref Expression
difelfzle ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ (0...𝑁))

Proof of Theorem difelfzle
StepHypRef Expression
1 elfznn0 13349 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
2 elfznn0 13349 . . . . 5 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
3 nn0z 12343 . . . . . . . . 9 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
4 nn0z 12343 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
5 zsubcl 12362 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾) ∈ ℤ)
63, 4, 5syl2anr 597 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀𝐾) ∈ ℤ)
76adantr 481 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ ℤ)
8 nn0re 12242 . . . . . . . . 9 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
9 nn0re 12242 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
10 subge0 11488 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ (𝑀𝐾) ↔ 𝐾𝑀))
118, 9, 10syl2anr 597 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (0 ≤ (𝑀𝐾) ↔ 𝐾𝑀))
1211biimpar 478 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝐾𝑀) → 0 ≤ (𝑀𝐾))
137, 12jca 512 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝐾𝑀) → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))
1413exp31 420 . . . . 5 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾𝑀 → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))))
151, 2, 14syl2im 40 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑀 ∈ (0...𝑁) → (𝐾𝑀 → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))))
16153imp 1110 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))
17 elnn0z 12332 . . 3 ((𝑀𝐾) ∈ ℕ0 ↔ ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))
1816, 17sylibr 233 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ ℕ0)
19 elfz3nn0 13350 . . 3 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
20193ad2ant1 1132 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → 𝑁 ∈ ℕ0)
21 elfz2nn0 13347 . . . . . 6 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
2283ad2ant1 1132 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℝ)
23 resubcl 11285 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀𝐾) ∈ ℝ)
2422, 9, 23syl2an 596 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾) ∈ ℝ)
2522adantr 481 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 𝑀 ∈ ℝ)
26 nn0re 12242 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
27263ad2ant2 1133 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → 𝑁 ∈ ℝ)
2827adantr 481 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℝ)
29 nn0ge0 12258 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
3029adantl 482 . . . . . . . . 9 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 0 ≤ 𝐾)
31 subge02 11491 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ (𝑀𝐾) ≤ 𝑀))
3222, 9, 31syl2an 596 . . . . . . . . 9 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (0 ≤ 𝐾 ↔ (𝑀𝐾) ≤ 𝑀))
3330, 32mpbid 231 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾) ≤ 𝑀)
34 simpl3 1192 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 𝑀𝑁)
3524, 25, 28, 33, 34letrd 11132 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾) ≤ 𝑁)
3635ex 413 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐾 ∈ ℕ0 → (𝑀𝐾) ≤ 𝑁))
3721, 36sylbi 216 . . . . 5 (𝑀 ∈ (0...𝑁) → (𝐾 ∈ ℕ0 → (𝑀𝐾) ≤ 𝑁))
381, 37syl5com 31 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑀 ∈ (0...𝑁) → (𝑀𝐾) ≤ 𝑁))
3938a1dd 50 . . 3 (𝐾 ∈ (0...𝑁) → (𝑀 ∈ (0...𝑁) → (𝐾𝑀 → (𝑀𝐾) ≤ 𝑁)))
40393imp 1110 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ≤ 𝑁)
41 elfz2nn0 13347 . 2 ((𝑀𝐾) ∈ (0...𝑁) ↔ ((𝑀𝐾) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑀𝐾) ≤ 𝑁))
4218, 20, 40, 41syl3anbrc 1342 1 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ (0...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2106   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871  cle 11010  cmin 11205  0cn0 12233  cz 12319  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  2cshwcshw  14538
  Copyright terms: Public domain W3C validator