Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caushft Structured version   Visualization version   GIF version

Theorem caushft 36220
Description: A shifted Cauchy sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
caures.1 𝑍 = (ℤ𝑀)
caures.3 (𝜑𝑀 ∈ ℤ)
caures.4 (𝜑𝐷 ∈ (Met‘𝑋))
caushft.4 𝑊 = (ℤ‘(𝑀 + 𝑁))
caushft.5 (𝜑𝑁 ∈ ℤ)
caushft.7 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)))
caushft.8 (𝜑𝐹 ∈ (Cau‘𝐷))
caushft.9 (𝜑𝐺:𝑊𝑋)
Assertion
Ref Expression
caushft (𝜑𝐺 ∈ (Cau‘𝐷))
Distinct variable groups:   𝐷,𝑘   𝑘,𝐺   𝜑,𝑘   𝑘,𝑋   𝑘,𝐹   𝑘,𝑁   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑊(𝑘)

Proof of Theorem caushft
Dummy variables 𝑗 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caushft.8 . . . . 5 (𝜑𝐹 ∈ (Cau‘𝐷))
2 caures.1 . . . . . 6 𝑍 = (ℤ𝑀)
3 caures.4 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 23687 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 caures.3 . . . . . 6 (𝜑𝑀 ∈ ℤ)
7 caushft.7 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)))
87ralrimiva 3143 . . . . . . 7 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)))
9 fveq2 6842 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
10 fvoveq1 7380 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐺‘(𝑘 + 𝑁)) = (𝐺‘(𝑗 + 𝑁)))
119, 10eqeq12d 2752 . . . . . . . 8 (𝑘 = 𝑗 → ((𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)) ↔ (𝐹𝑗) = (𝐺‘(𝑗 + 𝑁))))
1211rspccva 3580 . . . . . . 7 ((∀𝑘𝑍 (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)) ∧ 𝑗𝑍) → (𝐹𝑗) = (𝐺‘(𝑗 + 𝑁)))
138, 12sylan 580 . . . . . 6 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺‘(𝑗 + 𝑁)))
142, 5, 6, 7, 13iscau4 24643 . . . . 5 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))))
151, 14mpbid 231 . . . 4 (𝜑 → (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)))
1615simprd 496 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
172eleq2i 2829 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
1817biimpi 215 . . . . . . . 8 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
19 caushft.5 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
20 eluzadd 12792 . . . . . . . 8 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝑗 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑁)))
2118, 19, 20syl2anr 597 . . . . . . 7 ((𝜑𝑗𝑍) → (𝑗 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑁)))
22 caushft.4 . . . . . . 7 𝑊 = (ℤ‘(𝑀 + 𝑁))
2321, 22eleqtrrdi 2849 . . . . . 6 ((𝜑𝑗𝑍) → (𝑗 + 𝑁) ∈ 𝑊)
24 simplr 767 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑗𝑍)
2524, 2eleqtrdi 2848 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑗 ∈ (ℤ𝑀))
26 eluzelz 12773 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
2725, 26syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑗 ∈ ℤ)
2819ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑁 ∈ ℤ)
29 simpr 485 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚 ∈ (ℤ‘(𝑗 + 𝑁)))
30 eluzsub 12793 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝑚𝑁) ∈ (ℤ𝑗))
3127, 28, 29, 30syl3anc 1371 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝑚𝑁) ∈ (ℤ𝑗))
32 simp3 1138 . . . . . . . . . 10 ((𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)
3332ralimi 3086 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)
34 fvoveq1 7380 . . . . . . . . . . . 12 (𝑘 = (𝑚𝑁) → (𝐺‘(𝑘 + 𝑁)) = (𝐺‘((𝑚𝑁) + 𝑁)))
3534oveq1d 7372 . . . . . . . . . . 11 (𝑘 = (𝑚𝑁) → ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))))
3635breq1d 5115 . . . . . . . . . 10 (𝑘 = (𝑚𝑁) → (((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 ↔ ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
3736rspcv 3577 . . . . . . . . 9 ((𝑚𝑁) ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
3831, 33, 37syl2im 40 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
39 eluzelz 12773 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ‘(𝑗 + 𝑁)) → 𝑚 ∈ ℤ)
4039adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚 ∈ ℤ)
4140zcnd 12608 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚 ∈ ℂ)
4219zcnd 12608 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
4342ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑁 ∈ ℂ)
4441, 43npcand 11516 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝑚𝑁) + 𝑁) = 𝑚)
4544fveq2d 6846 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝐺‘((𝑚𝑁) + 𝑁)) = (𝐺𝑚))
4645oveq1d 7372 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺𝑚)𝐷(𝐺‘(𝑗 + 𝑁))))
473ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝐷 ∈ (Met‘𝑋))
48 caushft.9 . . . . . . . . . . . . 13 (𝜑𝐺:𝑊𝑋)
4948ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝐺:𝑊𝑋)
5022uztrn2 12782 . . . . . . . . . . . . 13 (((𝑗 + 𝑁) ∈ 𝑊𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚𝑊)
5123, 50sylan 580 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚𝑊)
5249, 51ffvelcdmd 7036 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝐺𝑚) ∈ 𝑋)
5348adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝐺:𝑊𝑋)
5453, 23ffvelcdmd 7036 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋)
5554adantr 481 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋)
56 metsym 23703 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺𝑚) ∈ 𝑋 ∧ (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋) → ((𝐺𝑚)𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
5747, 52, 55, 56syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝐺𝑚)𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
5846, 57eqtrd 2776 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
5958breq1d 5115 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 ↔ ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6038, 59sylibd 238 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6160ralrimdva 3151 . . . . . 6 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑚 ∈ (ℤ‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
62 fveq2 6842 . . . . . . . 8 (𝑛 = (𝑗 + 𝑁) → (ℤ𝑛) = (ℤ‘(𝑗 + 𝑁)))
63 fveq2 6842 . . . . . . . . . 10 (𝑛 = (𝑗 + 𝑁) → (𝐺𝑛) = (𝐺‘(𝑗 + 𝑁)))
6463oveq1d 7372 . . . . . . . . 9 (𝑛 = (𝑗 + 𝑁) → ((𝐺𝑛)𝐷(𝐺𝑚)) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
6564breq1d 5115 . . . . . . . 8 (𝑛 = (𝑗 + 𝑁) → (((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥 ↔ ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6662, 65raleqbidv 3319 . . . . . . 7 (𝑛 = (𝑗 + 𝑁) → (∀𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6766rspcev 3581 . . . . . 6 (((𝑗 + 𝑁) ∈ 𝑊 ∧ ∀𝑚 ∈ (ℤ‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥) → ∃𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥)
6823, 61, 67syl6an 682 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∃𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
6968rexlimdva 3152 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∃𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
7069ralimdv 3166 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
7116, 70mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥)
726, 19zaddcld 12611 . . 3 (𝜑 → (𝑀 + 𝑁) ∈ ℤ)
73 eqidd 2737 . . 3 ((𝜑𝑚𝑊) → (𝐺𝑚) = (𝐺𝑚))
74 eqidd 2737 . . 3 ((𝜑𝑛𝑊) → (𝐺𝑛) = (𝐺𝑛))
7522, 5, 72, 73, 74, 48iscauf 24644 . 2 (𝜑 → (𝐺 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
7671, 75mpbird 256 1 (𝜑𝐺 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073   class class class wbr 5105  dom cdm 5633  wf 6492  cfv 6496  (class class class)co 7357  pm cpm 8766  cc 11049   + caddc 11054   < clt 11189  cmin 11385  cz 12499  cuz 12763  +crp 12915  ∞Metcxmet 20781  Metcmet 20782  Cauccau 24617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-xneg 13033  df-xadd 13034  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-cau 24620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator