Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caushft Structured version   Visualization version   GIF version

Theorem caushft 35846
Description: A shifted Cauchy sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
caures.1 𝑍 = (ℤ𝑀)
caures.3 (𝜑𝑀 ∈ ℤ)
caures.4 (𝜑𝐷 ∈ (Met‘𝑋))
caushft.4 𝑊 = (ℤ‘(𝑀 + 𝑁))
caushft.5 (𝜑𝑁 ∈ ℤ)
caushft.7 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)))
caushft.8 (𝜑𝐹 ∈ (Cau‘𝐷))
caushft.9 (𝜑𝐺:𝑊𝑋)
Assertion
Ref Expression
caushft (𝜑𝐺 ∈ (Cau‘𝐷))
Distinct variable groups:   𝐷,𝑘   𝑘,𝐺   𝜑,𝑘   𝑘,𝑋   𝑘,𝐹   𝑘,𝑁   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑊(𝑘)

Proof of Theorem caushft
Dummy variables 𝑗 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caushft.8 . . . . 5 (𝜑𝐹 ∈ (Cau‘𝐷))
2 caures.1 . . . . . 6 𝑍 = (ℤ𝑀)
3 caures.4 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 23395 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 caures.3 . . . . . 6 (𝜑𝑀 ∈ ℤ)
7 caushft.7 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)))
87ralrimiva 3107 . . . . . . 7 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)))
9 fveq2 6756 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
10 fvoveq1 7278 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐺‘(𝑘 + 𝑁)) = (𝐺‘(𝑗 + 𝑁)))
119, 10eqeq12d 2754 . . . . . . . 8 (𝑘 = 𝑗 → ((𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)) ↔ (𝐹𝑗) = (𝐺‘(𝑗 + 𝑁))))
1211rspccva 3551 . . . . . . 7 ((∀𝑘𝑍 (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)) ∧ 𝑗𝑍) → (𝐹𝑗) = (𝐺‘(𝑗 + 𝑁)))
138, 12sylan 579 . . . . . 6 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺‘(𝑗 + 𝑁)))
142, 5, 6, 7, 13iscau4 24348 . . . . 5 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))))
151, 14mpbid 231 . . . 4 (𝜑 → (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)))
1615simprd 495 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
172eleq2i 2830 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
1817biimpi 215 . . . . . . . 8 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
19 caushft.5 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
20 eluzadd 12542 . . . . . . . 8 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝑗 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑁)))
2118, 19, 20syl2anr 596 . . . . . . 7 ((𝜑𝑗𝑍) → (𝑗 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑁)))
22 caushft.4 . . . . . . 7 𝑊 = (ℤ‘(𝑀 + 𝑁))
2321, 22eleqtrrdi 2850 . . . . . 6 ((𝜑𝑗𝑍) → (𝑗 + 𝑁) ∈ 𝑊)
24 simplr 765 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑗𝑍)
2524, 2eleqtrdi 2849 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑗 ∈ (ℤ𝑀))
26 eluzelz 12521 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
2725, 26syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑗 ∈ ℤ)
2819ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑁 ∈ ℤ)
29 simpr 484 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚 ∈ (ℤ‘(𝑗 + 𝑁)))
30 eluzsub 12543 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝑚𝑁) ∈ (ℤ𝑗))
3127, 28, 29, 30syl3anc 1369 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝑚𝑁) ∈ (ℤ𝑗))
32 simp3 1136 . . . . . . . . . 10 ((𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)
3332ralimi 3086 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)
34 fvoveq1 7278 . . . . . . . . . . . 12 (𝑘 = (𝑚𝑁) → (𝐺‘(𝑘 + 𝑁)) = (𝐺‘((𝑚𝑁) + 𝑁)))
3534oveq1d 7270 . . . . . . . . . . 11 (𝑘 = (𝑚𝑁) → ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))))
3635breq1d 5080 . . . . . . . . . 10 (𝑘 = (𝑚𝑁) → (((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 ↔ ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
3736rspcv 3547 . . . . . . . . 9 ((𝑚𝑁) ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
3831, 33, 37syl2im 40 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
39 eluzelz 12521 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ‘(𝑗 + 𝑁)) → 𝑚 ∈ ℤ)
4039adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚 ∈ ℤ)
4140zcnd 12356 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚 ∈ ℂ)
4219zcnd 12356 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
4342ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑁 ∈ ℂ)
4441, 43npcand 11266 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝑚𝑁) + 𝑁) = 𝑚)
4544fveq2d 6760 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝐺‘((𝑚𝑁) + 𝑁)) = (𝐺𝑚))
4645oveq1d 7270 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺𝑚)𝐷(𝐺‘(𝑗 + 𝑁))))
473ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝐷 ∈ (Met‘𝑋))
48 caushft.9 . . . . . . . . . . . . 13 (𝜑𝐺:𝑊𝑋)
4948ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝐺:𝑊𝑋)
5022uztrn2 12530 . . . . . . . . . . . . 13 (((𝑗 + 𝑁) ∈ 𝑊𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚𝑊)
5123, 50sylan 579 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚𝑊)
5249, 51ffvelrnd 6944 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝐺𝑚) ∈ 𝑋)
5348adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝐺:𝑊𝑋)
5453, 23ffvelrnd 6944 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋)
5554adantr 480 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋)
56 metsym 23411 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺𝑚) ∈ 𝑋 ∧ (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋) → ((𝐺𝑚)𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
5747, 52, 55, 56syl3anc 1369 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝐺𝑚)𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
5846, 57eqtrd 2778 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
5958breq1d 5080 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 ↔ ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6038, 59sylibd 238 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6160ralrimdva 3112 . . . . . 6 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑚 ∈ (ℤ‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
62 fveq2 6756 . . . . . . . 8 (𝑛 = (𝑗 + 𝑁) → (ℤ𝑛) = (ℤ‘(𝑗 + 𝑁)))
63 fveq2 6756 . . . . . . . . . 10 (𝑛 = (𝑗 + 𝑁) → (𝐺𝑛) = (𝐺‘(𝑗 + 𝑁)))
6463oveq1d 7270 . . . . . . . . 9 (𝑛 = (𝑗 + 𝑁) → ((𝐺𝑛)𝐷(𝐺𝑚)) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
6564breq1d 5080 . . . . . . . 8 (𝑛 = (𝑗 + 𝑁) → (((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥 ↔ ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6662, 65raleqbidv 3327 . . . . . . 7 (𝑛 = (𝑗 + 𝑁) → (∀𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6766rspcev 3552 . . . . . 6 (((𝑗 + 𝑁) ∈ 𝑊 ∧ ∀𝑚 ∈ (ℤ‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥) → ∃𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥)
6823, 61, 67syl6an 680 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∃𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
6968rexlimdva 3212 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∃𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
7069ralimdv 3103 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
7116, 70mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥)
726, 19zaddcld 12359 . . 3 (𝜑 → (𝑀 + 𝑁) ∈ ℤ)
73 eqidd 2739 . . 3 ((𝜑𝑚𝑊) → (𝐺𝑚) = (𝐺𝑚))
74 eqidd 2739 . . 3 ((𝜑𝑛𝑊) → (𝐺𝑛) = (𝐺𝑛))
7522, 5, 72, 73, 74, 48iscauf 24349 . 2 (𝜑 → (𝐺 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
7671, 75mpbird 256 1 (𝜑𝐺 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064   class class class wbr 5070  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  pm cpm 8574  cc 10800   + caddc 10805   < clt 10940  cmin 11135  cz 12249  cuz 12511  +crp 12659  ∞Metcxmet 20495  Metcmet 20496  Cauccau 24322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-xneg 12777  df-xadd 12778  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-cau 24325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator