Step | Hyp | Ref
| Expression |
1 | | caushft.8 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) |
2 | | caures.1 |
. . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | | caures.4 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
4 | | metxmet 23395 |
. . . . . . 7
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
6 | | caures.3 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | | caushft.7 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝑁))) |
8 | 7 | ralrimiva 3107 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝑁))) |
9 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
10 | | fvoveq1 7278 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (𝐺‘(𝑘 + 𝑁)) = (𝐺‘(𝑗 + 𝑁))) |
11 | 9, 10 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = (𝐺‘(𝑘 + 𝑁)) ↔ (𝐹‘𝑗) = (𝐺‘(𝑗 + 𝑁)))) |
12 | 11 | rspccva 3551 |
. . . . . . 7
⊢
((∀𝑘 ∈
𝑍 (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝑁)) ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘(𝑗 + 𝑁))) |
13 | 8, 12 | sylan 579 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘(𝑗 + 𝑁))) |
14 | 2, 5, 6, 7, 13 | iscau4 24348 |
. . . . 5
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)))) |
15 | 1, 14 | mpbid 231 |
. . . 4
⊢ (𝜑 → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))) |
16 | 15 | simprd 495 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)) |
17 | 2 | eleq2i 2830 |
. . . . . . . . 9
⊢ (𝑗 ∈ 𝑍 ↔ 𝑗 ∈ (ℤ≥‘𝑀)) |
18 | 17 | biimpi 215 |
. . . . . . . 8
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑀)) |
19 | | caushft.5 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
20 | | eluzadd 12542 |
. . . . . . . 8
⊢ ((𝑗 ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝑗 + 𝑁) ∈
(ℤ≥‘(𝑀 + 𝑁))) |
21 | 18, 19, 20 | syl2anr 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 𝑁) ∈
(ℤ≥‘(𝑀 + 𝑁))) |
22 | | caushft.4 |
. . . . . . 7
⊢ 𝑊 =
(ℤ≥‘(𝑀 + 𝑁)) |
23 | 21, 22 | eleqtrrdi 2850 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 𝑁) ∈ 𝑊) |
24 | | simplr 765 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑗 ∈ 𝑍) |
25 | 24, 2 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑗 ∈ (ℤ≥‘𝑀)) |
26 | | eluzelz 12521 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) |
27 | 25, 26 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑗 ∈ ℤ) |
28 | 19 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑁 ∈ ℤ) |
29 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) |
30 | | eluzsub 12543 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈
(ℤ≥‘(𝑗 + 𝑁))) → (𝑚 − 𝑁) ∈ (ℤ≥‘𝑗)) |
31 | 27, 28, 29, 30 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → (𝑚 − 𝑁) ∈ (ℤ≥‘𝑗)) |
32 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) |
33 | 32 | ralimi 3086 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) |
34 | | fvoveq1 7278 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑚 − 𝑁) → (𝐺‘(𝑘 + 𝑁)) = (𝐺‘((𝑚 − 𝑁) + 𝑁))) |
35 | 34 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑚 − 𝑁) → ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘((𝑚 − 𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁)))) |
36 | 35 | breq1d 5080 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑚 − 𝑁) → (((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 ↔ ((𝐺‘((𝑚 − 𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)) |
37 | 36 | rspcv 3547 |
. . . . . . . . 9
⊢ ((𝑚 − 𝑁) ∈ (ℤ≥‘𝑗) → (∀𝑘 ∈
(ℤ≥‘𝑗)((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 → ((𝐺‘((𝑚 − 𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)) |
38 | 31, 33, 37 | syl2im 40 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘((𝑚 − 𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)) |
39 | | eluzelz 12521 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈
(ℤ≥‘(𝑗 + 𝑁)) → 𝑚 ∈ ℤ) |
40 | 39 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑚 ∈ ℤ) |
41 | 40 | zcnd 12356 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑚 ∈ ℂ) |
42 | 19 | zcnd 12356 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℂ) |
43 | 42 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑁 ∈ ℂ) |
44 | 41, 43 | npcand 11266 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → ((𝑚 − 𝑁) + 𝑁) = 𝑚) |
45 | 44 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → (𝐺‘((𝑚 − 𝑁) + 𝑁)) = (𝐺‘𝑚)) |
46 | 45 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → ((𝐺‘((𝑚 − 𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘𝑚)𝐷(𝐺‘(𝑗 + 𝑁)))) |
47 | 3 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝐷 ∈ (Met‘𝑋)) |
48 | | caushft.9 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺:𝑊⟶𝑋) |
49 | 48 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝐺:𝑊⟶𝑋) |
50 | 22 | uztrn2 12530 |
. . . . . . . . . . . . 13
⊢ (((𝑗 + 𝑁) ∈ 𝑊 ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑚 ∈ 𝑊) |
51 | 23, 50 | sylan 579 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑚 ∈ 𝑊) |
52 | 49, 51 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → (𝐺‘𝑚) ∈ 𝑋) |
53 | 48 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐺:𝑊⟶𝑋) |
54 | 53, 23 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋) |
55 | 54 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋) |
56 | | metsym 23411 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺‘𝑚) ∈ 𝑋 ∧ (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋) → ((𝐺‘𝑚)𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚))) |
57 | 47, 52, 55, 56 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → ((𝐺‘𝑚)𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚))) |
58 | 46, 57 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → ((𝐺‘((𝑚 − 𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚))) |
59 | 58 | breq1d 5080 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → (((𝐺‘((𝑚 − 𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 ↔ ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚)) < 𝑥)) |
60 | 38, 59 | sylibd 238 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚)) < 𝑥)) |
61 | 60 | ralrimdva 3112 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚)) < 𝑥)) |
62 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑛 = (𝑗 + 𝑁) → (ℤ≥‘𝑛) =
(ℤ≥‘(𝑗 + 𝑁))) |
63 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑗 + 𝑁) → (𝐺‘𝑛) = (𝐺‘(𝑗 + 𝑁))) |
64 | 63 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑛 = (𝑗 + 𝑁) → ((𝐺‘𝑛)𝐷(𝐺‘𝑚)) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚))) |
65 | 64 | breq1d 5080 |
. . . . . . . 8
⊢ (𝑛 = (𝑗 + 𝑁) → (((𝐺‘𝑛)𝐷(𝐺‘𝑚)) < 𝑥 ↔ ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚)) < 𝑥)) |
66 | 62, 65 | raleqbidv 3327 |
. . . . . . 7
⊢ (𝑛 = (𝑗 + 𝑁) → (∀𝑚 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛)𝐷(𝐺‘𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚)) < 𝑥)) |
67 | 66 | rspcev 3552 |
. . . . . 6
⊢ (((𝑗 + 𝑁) ∈ 𝑊 ∧ ∀𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚)) < 𝑥) → ∃𝑛 ∈ 𝑊 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛)𝐷(𝐺‘𝑚)) < 𝑥) |
68 | 23, 61, 67 | syl6an 680 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∃𝑛 ∈ 𝑊 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛)𝐷(𝐺‘𝑚)) < 𝑥)) |
69 | 68 | rexlimdva 3212 |
. . . 4
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∃𝑛 ∈ 𝑊 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛)𝐷(𝐺‘𝑚)) < 𝑥)) |
70 | 69 | ralimdv 3103 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑊 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛)𝐷(𝐺‘𝑚)) < 𝑥)) |
71 | 16, 70 | mpd 15 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑊 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛)𝐷(𝐺‘𝑚)) < 𝑥) |
72 | 6, 19 | zaddcld 12359 |
. . 3
⊢ (𝜑 → (𝑀 + 𝑁) ∈ ℤ) |
73 | | eqidd 2739 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝐺‘𝑚) = (𝐺‘𝑚)) |
74 | | eqidd 2739 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑊) → (𝐺‘𝑛) = (𝐺‘𝑛)) |
75 | 22, 5, 72, 73, 74, 48 | iscauf 24349 |
. 2
⊢ (𝜑 → (𝐺 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑊 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛)𝐷(𝐺‘𝑚)) < 𝑥)) |
76 | 71, 75 | mpbird 256 |
1
⊢ (𝜑 → 𝐺 ∈ (Cau‘𝐷)) |