Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caushft Structured version   Visualization version   GIF version

Theorem caushft 37807
Description: A shifted Cauchy sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
caures.1 𝑍 = (ℤ𝑀)
caures.3 (𝜑𝑀 ∈ ℤ)
caures.4 (𝜑𝐷 ∈ (Met‘𝑋))
caushft.4 𝑊 = (ℤ‘(𝑀 + 𝑁))
caushft.5 (𝜑𝑁 ∈ ℤ)
caushft.7 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)))
caushft.8 (𝜑𝐹 ∈ (Cau‘𝐷))
caushft.9 (𝜑𝐺:𝑊𝑋)
Assertion
Ref Expression
caushft (𝜑𝐺 ∈ (Cau‘𝐷))
Distinct variable groups:   𝐷,𝑘   𝑘,𝐺   𝜑,𝑘   𝑘,𝑋   𝑘,𝐹   𝑘,𝑁   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑊(𝑘)

Proof of Theorem caushft
Dummy variables 𝑗 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caushft.8 . . . . 5 (𝜑𝐹 ∈ (Cau‘𝐷))
2 caures.1 . . . . . 6 𝑍 = (ℤ𝑀)
3 caures.4 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 24250 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 caures.3 . . . . . 6 (𝜑𝑀 ∈ ℤ)
7 caushft.7 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)))
87ralrimiva 3124 . . . . . . 7 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)))
9 fveq2 6822 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
10 fvoveq1 7369 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐺‘(𝑘 + 𝑁)) = (𝐺‘(𝑗 + 𝑁)))
119, 10eqeq12d 2747 . . . . . . . 8 (𝑘 = 𝑗 → ((𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)) ↔ (𝐹𝑗) = (𝐺‘(𝑗 + 𝑁))))
1211rspccva 3576 . . . . . . 7 ((∀𝑘𝑍 (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)) ∧ 𝑗𝑍) → (𝐹𝑗) = (𝐺‘(𝑗 + 𝑁)))
138, 12sylan 580 . . . . . 6 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺‘(𝑗 + 𝑁)))
142, 5, 6, 7, 13iscau4 25207 . . . . 5 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))))
151, 14mpbid 232 . . . 4 (𝜑 → (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)))
1615simprd 495 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
172eleq2i 2823 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
1817biimpi 216 . . . . . . . 8 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
19 caushft.5 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
20 eluzadd 12761 . . . . . . . 8 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝑗 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑁)))
2118, 19, 20syl2anr 597 . . . . . . 7 ((𝜑𝑗𝑍) → (𝑗 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑁)))
22 caushft.4 . . . . . . 7 𝑊 = (ℤ‘(𝑀 + 𝑁))
2321, 22eleqtrrdi 2842 . . . . . 6 ((𝜑𝑗𝑍) → (𝑗 + 𝑁) ∈ 𝑊)
24 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑗𝑍)
2524, 2eleqtrdi 2841 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑗 ∈ (ℤ𝑀))
26 eluzelz 12742 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
2725, 26syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑗 ∈ ℤ)
2819ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑁 ∈ ℤ)
29 simpr 484 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚 ∈ (ℤ‘(𝑗 + 𝑁)))
30 eluzsub 12762 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝑚𝑁) ∈ (ℤ𝑗))
3127, 28, 29, 30syl3anc 1373 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝑚𝑁) ∈ (ℤ𝑗))
32 simp3 1138 . . . . . . . . . 10 ((𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)
3332ralimi 3069 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)
34 fvoveq1 7369 . . . . . . . . . . . 12 (𝑘 = (𝑚𝑁) → (𝐺‘(𝑘 + 𝑁)) = (𝐺‘((𝑚𝑁) + 𝑁)))
3534oveq1d 7361 . . . . . . . . . . 11 (𝑘 = (𝑚𝑁) → ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))))
3635breq1d 5101 . . . . . . . . . 10 (𝑘 = (𝑚𝑁) → (((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 ↔ ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
3736rspcv 3573 . . . . . . . . 9 ((𝑚𝑁) ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
3831, 33, 37syl2im 40 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
39 eluzelz 12742 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ‘(𝑗 + 𝑁)) → 𝑚 ∈ ℤ)
4039adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚 ∈ ℤ)
4140zcnd 12578 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚 ∈ ℂ)
4219zcnd 12578 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
4342ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑁 ∈ ℂ)
4441, 43npcand 11476 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝑚𝑁) + 𝑁) = 𝑚)
4544fveq2d 6826 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝐺‘((𝑚𝑁) + 𝑁)) = (𝐺𝑚))
4645oveq1d 7361 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺𝑚)𝐷(𝐺‘(𝑗 + 𝑁))))
473ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝐷 ∈ (Met‘𝑋))
48 caushft.9 . . . . . . . . . . . . 13 (𝜑𝐺:𝑊𝑋)
4948ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝐺:𝑊𝑋)
5022uztrn2 12751 . . . . . . . . . . . . 13 (((𝑗 + 𝑁) ∈ 𝑊𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚𝑊)
5123, 50sylan 580 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚𝑊)
5249, 51ffvelcdmd 7018 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝐺𝑚) ∈ 𝑋)
5348adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝐺:𝑊𝑋)
5453, 23ffvelcdmd 7018 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋)
5554adantr 480 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋)
56 metsym 24266 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺𝑚) ∈ 𝑋 ∧ (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋) → ((𝐺𝑚)𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
5747, 52, 55, 56syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝐺𝑚)𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
5846, 57eqtrd 2766 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
5958breq1d 5101 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 ↔ ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6038, 59sylibd 239 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6160ralrimdva 3132 . . . . . 6 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑚 ∈ (ℤ‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
62 fveq2 6822 . . . . . . . 8 (𝑛 = (𝑗 + 𝑁) → (ℤ𝑛) = (ℤ‘(𝑗 + 𝑁)))
63 fveq2 6822 . . . . . . . . . 10 (𝑛 = (𝑗 + 𝑁) → (𝐺𝑛) = (𝐺‘(𝑗 + 𝑁)))
6463oveq1d 7361 . . . . . . . . 9 (𝑛 = (𝑗 + 𝑁) → ((𝐺𝑛)𝐷(𝐺𝑚)) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
6564breq1d 5101 . . . . . . . 8 (𝑛 = (𝑗 + 𝑁) → (((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥 ↔ ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6662, 65raleqbidv 3312 . . . . . . 7 (𝑛 = (𝑗 + 𝑁) → (∀𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6766rspcev 3577 . . . . . 6 (((𝑗 + 𝑁) ∈ 𝑊 ∧ ∀𝑚 ∈ (ℤ‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥) → ∃𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥)
6823, 61, 67syl6an 684 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∃𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
6968rexlimdva 3133 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∃𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
7069ralimdv 3146 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
7116, 70mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥)
726, 19zaddcld 12581 . . 3 (𝜑 → (𝑀 + 𝑁) ∈ ℤ)
73 eqidd 2732 . . 3 ((𝜑𝑚𝑊) → (𝐺𝑚) = (𝐺𝑚))
74 eqidd 2732 . . 3 ((𝜑𝑛𝑊) → (𝐺𝑛) = (𝐺𝑛))
7522, 5, 72, 73, 74, 48iscauf 25208 . 2 (𝜑 → (𝐺 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
7671, 75mpbird 257 1 (𝜑𝐺 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056   class class class wbr 5091  dom cdm 5616  wf 6477  cfv 6481  (class class class)co 7346  pm cpm 8751  cc 11004   + caddc 11009   < clt 11146  cmin 11344  cz 12468  cuz 12732  +crp 12890  ∞Metcxmet 21277  Metcmet 21278  Cauccau 25181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-xneg 13011  df-xadd 13012  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-cau 25184
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator