Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatrnss12 Structured version   Visualization version   GIF version

Theorem tfsconcatrnss12 43331
Description: The range of the concatenation of transfinite sequences is a superset of the ranges of both sequences. Theorem 3 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 2-Mar-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcatrnss12 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran 𝐴 ⊆ ran (𝐴 + 𝐵) ∧ ran 𝐵 ⊆ ran (𝐴 + 𝐵)))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem tfsconcatrnss12
StepHypRef Expression
1 tfsconcat.op . . 3 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
21tfsconcatrn 43324 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵))
3 ssun1 4143 . . . 4 ran 𝐴 ⊆ (ran 𝐴 ∪ ran 𝐵)
4 id 22 . . . 4 (ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵))
53, 4sseqtrrid 3992 . . 3 (ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵) → ran 𝐴 ⊆ ran (𝐴 + 𝐵))
6 ssun2 4144 . . . 4 ran 𝐵 ⊆ (ran 𝐴 ∪ ran 𝐵)
76, 4sseqtrrid 3992 . . 3 (ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵) → ran 𝐵 ⊆ ran (𝐴 + 𝐵))
85, 7jca 511 . 2 (ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵) → (ran 𝐴 ⊆ ran (𝐴 + 𝐵) ∧ ran 𝐵 ⊆ ran (𝐴 + 𝐵)))
92, 8syl 17 1 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran 𝐴 ⊆ ran (𝐴 + 𝐵) ∧ ran 𝐵 ⊆ ran (𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  cdif 3913  cun 3914  wss 3916  {copab 5171  dom cdm 5640  ran crn 5641  Oncon0 6334   Fn wfn 6508  cfv 6513  (class class class)co 7389  cmpo 7391   +o coa 8433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-oadd 8440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator