![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tfsconcatrnss12 | Structured version Visualization version GIF version |
Description: The range of the concatenation of transfinite sequences is a superset of the ranges of both sequences. Theorem 3 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 2-Mar-2025.) |
Ref | Expression |
---|---|
tfsconcat.op | ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) |
Ref | Expression |
---|---|
tfsconcatrnss12 | ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran 𝐴 ⊆ ran (𝐴 + 𝐵) ∧ ran 𝐵 ⊆ ran (𝐴 + 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfsconcat.op | . . 3 ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) | |
2 | 1 | tfsconcatrn 43348 | . 2 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵)) |
3 | ssun1 4191 | . . . 4 ⊢ ran 𝐴 ⊆ (ran 𝐴 ∪ ran 𝐵) | |
4 | id 22 | . . . 4 ⊢ (ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵)) | |
5 | 3, 4 | sseqtrrid 4052 | . . 3 ⊢ (ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵) → ran 𝐴 ⊆ ran (𝐴 + 𝐵)) |
6 | ssun2 4192 | . . . 4 ⊢ ran 𝐵 ⊆ (ran 𝐴 ∪ ran 𝐵) | |
7 | 6, 4 | sseqtrrid 4052 | . . 3 ⊢ (ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵) → ran 𝐵 ⊆ ran (𝐴 + 𝐵)) |
8 | 5, 7 | jca 511 | . 2 ⊢ (ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵) → (ran 𝐴 ⊆ ran (𝐴 + 𝐵) ∧ ran 𝐵 ⊆ ran (𝐴 + 𝐵))) |
9 | 2, 8 | syl 17 | 1 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran 𝐴 ⊆ ran (𝐴 + 𝐵) ∧ ran 𝐵 ⊆ ran (𝐴 + 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3070 Vcvv 3481 ∖ cdif 3963 ∪ cun 3964 ⊆ wss 3966 {copab 5213 dom cdm 5693 ran crn 5694 Oncon0 6392 Fn wfn 6564 ‘cfv 6569 (class class class)co 7438 ∈ cmpo 7440 +o coa 8511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-oadd 8518 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |