| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tfsconcatrnss12 | Structured version Visualization version GIF version | ||
| Description: The range of the concatenation of transfinite sequences is a superset of the ranges of both sequences. Theorem 3 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 2-Mar-2025.) |
| Ref | Expression |
|---|---|
| tfsconcat.op | ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) |
| Ref | Expression |
|---|---|
| tfsconcatrnss12 | ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran 𝐴 ⊆ ran (𝐴 + 𝐵) ∧ ran 𝐵 ⊆ ran (𝐴 + 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfsconcat.op | . . 3 ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) | |
| 2 | 1 | tfsconcatrn 43338 | . 2 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵)) |
| 3 | ssun1 4144 | . . . 4 ⊢ ran 𝐴 ⊆ (ran 𝐴 ∪ ran 𝐵) | |
| 4 | id 22 | . . . 4 ⊢ (ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵)) | |
| 5 | 3, 4 | sseqtrrid 3993 | . . 3 ⊢ (ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵) → ran 𝐴 ⊆ ran (𝐴 + 𝐵)) |
| 6 | ssun2 4145 | . . . 4 ⊢ ran 𝐵 ⊆ (ran 𝐴 ∪ ran 𝐵) | |
| 7 | 6, 4 | sseqtrrid 3993 | . . 3 ⊢ (ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵) → ran 𝐵 ⊆ ran (𝐴 + 𝐵)) |
| 8 | 5, 7 | jca 511 | . 2 ⊢ (ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵) → (ran 𝐴 ⊆ ran (𝐴 + 𝐵) ∧ ran 𝐵 ⊆ ran (𝐴 + 𝐵))) |
| 9 | 2, 8 | syl 17 | 1 ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran 𝐴 ⊆ ran (𝐴 + 𝐵) ∧ ran 𝐵 ⊆ ran (𝐴 + 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ∖ cdif 3914 ∪ cun 3915 ⊆ wss 3917 {copab 5172 dom cdm 5641 ran crn 5642 Oncon0 6335 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 +o coa 8434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-oadd 8441 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |