Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trpredelss | Structured version Visualization version GIF version |
Description: Given a transitive predecessor 𝑌 of 𝑋, the transitive predecessors of 𝑌 form a subclass of the transitive predecessors of 𝑋. (Contributed by Scott Fenton, 25-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
trpredelss | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → TrPred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setlikespec 6217 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) | |
2 | trpredss 9407 | . . . . 5 ⊢ (Pred(𝑅, 𝐴, 𝑋) ∈ V → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐴) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐴) |
4 | 3 | sselda 3917 | . . 3 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋)) → 𝑌 ∈ 𝐴) |
5 | simplr 765 | . . 3 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋)) → 𝑅 Se 𝐴) | |
6 | trpredtr 9408 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → (𝑦 ∈ TrPred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋))) | |
7 | 6 | ralrimiv 3106 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ TrPred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋)) |
8 | 7 | adantr 480 | . . 3 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋)) → ∀𝑦 ∈ TrPred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋)) |
9 | trpredtr 9408 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))) | |
10 | 9 | imp 406 | . . 3 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋)) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)) |
11 | trpredmintr 9409 | . . 3 ⊢ (((𝑌 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ TrPred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋) ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))) → TrPred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)) | |
12 | 4, 5, 8, 10, 11 | syl22anc 835 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋)) → TrPred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)) |
13 | 12 | ex 412 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → TrPred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 Se wse 5533 Predcpred 6190 TrPredctrpred 9395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-trpred 9396 |
This theorem is referenced by: dftrpred3g 9412 |
Copyright terms: Public domain | W3C validator |