Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpred0 Structured version   Visualization version   GIF version

Theorem trpred0 32678
Description: The class of transitive predecessors is empty when 𝐴 is empty. (Contributed by Scott Fenton, 30-Apr-2012.)
Assertion
Ref Expression
trpred0 TrPred(𝑅, ∅, 𝑋) = ∅

Proof of Theorem trpred0
Dummy variables 𝑎 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftrpred2 32661 . 2 TrPred(𝑅, ∅, 𝑋) = 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) ↾ ω)‘𝑖)
2 pred0 6056 . . . . . . . . . . 11 Pred(𝑅, ∅, 𝑦) = ∅
32a1i 11 . . . . . . . . . 10 (𝑦𝑎 → Pred(𝑅, ∅, 𝑦) = ∅)
43iuneq2i 4847 . . . . . . . . 9 𝑦𝑎 Pred(𝑅, ∅, 𝑦) = 𝑦𝑎
5 iun0 4886 . . . . . . . . 9 𝑦𝑎 ∅ = ∅
64, 5eqtri 2818 . . . . . . . 8 𝑦𝑎 Pred(𝑅, ∅, 𝑦) = ∅
76mpteq2i 5055 . . . . . . 7 (𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)) = (𝑎 ∈ V ↦ ∅)
8 pred0 6056 . . . . . . 7 Pred(𝑅, ∅, 𝑋) = ∅
9 rdgeq12 7904 . . . . . . 7 (((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)) = (𝑎 ∈ V ↦ ∅) ∧ Pred(𝑅, ∅, 𝑋) = ∅) → rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) = rec((𝑎 ∈ V ↦ ∅), ∅))
107, 8, 9mp2an 688 . . . . . 6 rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) = rec((𝑎 ∈ V ↦ ∅), ∅)
1110reseq1i 5733 . . . . 5 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)
1211fveq1i 6542 . . . 4 ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) ↾ ω)‘𝑖) = ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑖)
13 nn0suc 7465 . . . . 5 (𝑖 ∈ ω → (𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗))
14 fveq2 6541 . . . . . . 7 (𝑖 = ∅ → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑖) = ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘∅))
15 0ex 5105 . . . . . . . 8 ∅ ∈ V
16 fr0g 7926 . . . . . . . 8 (∅ ∈ V → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘∅) = ∅)
1715, 16ax-mp 5 . . . . . . 7 ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘∅) = ∅
1814, 17syl6eq 2846 . . . . . 6 (𝑖 = ∅ → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑖) = ∅)
19 nfcv 2948 . . . . . . . . . 10 𝑎
20 nfcv 2948 . . . . . . . . . 10 𝑎𝑗
21 eqid 2794 . . . . . . . . . 10 (rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω) = (rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)
22 eqidd 2795 . . . . . . . . . 10 (𝑎 = ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑗) → ∅ = ∅)
2319, 20, 19, 21, 22frsucmpt 7928 . . . . . . . . 9 ((𝑗 ∈ ω ∧ ∅ ∈ V) → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘suc 𝑗) = ∅)
2415, 23mpan2 687 . . . . . . . 8 (𝑗 ∈ ω → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘suc 𝑗) = ∅)
25 fveqeq2 6550 . . . . . . . 8 (𝑖 = suc 𝑗 → (((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑖) = ∅ ↔ ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘suc 𝑗) = ∅))
2624, 25syl5ibrcom 248 . . . . . . 7 (𝑗 ∈ ω → (𝑖 = suc 𝑗 → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑖) = ∅))
2726rexlimiv 3242 . . . . . 6 (∃𝑗 ∈ ω 𝑖 = suc 𝑗 → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑖) = ∅)
2818, 27jaoi 852 . . . . 5 ((𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗) → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑖) = ∅)
2913, 28syl 17 . . . 4 (𝑖 ∈ ω → ((rec((𝑎 ∈ V ↦ ∅), ∅) ↾ ω)‘𝑖) = ∅)
3012, 29syl5eq 2842 . . 3 (𝑖 ∈ ω → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) ↾ ω)‘𝑖) = ∅)
3130iuneq2i 4847 . 2 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, ∅, 𝑦)), Pred(𝑅, ∅, 𝑋)) ↾ ω)‘𝑖) = 𝑖 ∈ ω ∅
32 iun0 4886 . 2 𝑖 ∈ ω ∅ = ∅
331, 31, 323eqtri 2822 1 TrPred(𝑅, ∅, 𝑋) = ∅
Colors of variables: wff setvar class
Syntax hints:  wo 842   = wceq 1522  wcel 2080  wrex 3105  Vcvv 3436  c0 4213   ciun 4827  cmpt 5043  cres 5448  Predcpred 6025  suc csuc 6071  cfv 6228  ωcom 7439  reccrdg 7900  TrPredctrpred 32659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-ral 3109  df-rex 3110  df-reu 3111  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-om 7440  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-trpred 32660
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator