MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trpredss Structured version   Visualization version   GIF version

Theorem trpredss 9407
Description: The transitive predecessors form a subclass of the base class. (Contributed by Scott Fenton, 20-Feb-2011.)
Assertion
Ref Expression
trpredss (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐴)

Proof of Theorem trpredss
Dummy variables 𝑎 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftrpred2 9397 . 2 TrPred(𝑅, 𝐴, 𝑋) = 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)
2 trpredlem1 9405 . . . 4 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
32ralrimivw 3108 . . 3 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ∀𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
4 iunss 4971 . . 3 ( 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴 ↔ ∀𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
53, 4sylibr 233 . 2 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
61, 5eqsstrid 3965 1 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3063  Vcvv 3422  wss 3883   ciun 4921  cmpt 5153  cres 5582  Predcpred 6190  cfv 6418  ωcom 7687  reccrdg 8211  TrPredctrpred 9395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-trpred 9396
This theorem is referenced by:  trpredelss  9411  dftrpred3g  9412  frmin  9438  frr1  9448
  Copyright terms: Public domain W3C validator