MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trpredss Structured version   Visualization version   GIF version

Theorem trpredss 9334
Description: The transitive predecessors form a subclass of the base class. (Contributed by Scott Fenton, 20-Feb-2011.)
Assertion
Ref Expression
trpredss (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐴)

Proof of Theorem trpredss
Dummy variables 𝑎 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftrpred2 9324 . 2 TrPred(𝑅, 𝐴, 𝑋) = 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)
2 trpredlem1 9332 . . . 4 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
32ralrimivw 3106 . . 3 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ∀𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
4 iunss 4954 . . 3 ( 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴 ↔ ∀𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
53, 4sylibr 237 . 2 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
61, 5eqsstrid 3949 1 (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  wral 3061  Vcvv 3408  wss 3866   ciun 4904  cmpt 5135  cres 5553  Predcpred 6159  cfv 6380  ωcom 7644  reccrdg 8145  TrPredctrpred 9322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-trpred 9323
This theorem is referenced by:  trpredelss  9338  dftrpred3g  9339  frmin  9365  frr1  9375
  Copyright terms: Public domain W3C validator