MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunex3 Structured version   Visualization version   GIF version

Theorem wunex3 10598
Description: Construct a weak universe from a given set. This version of wunex 10596 has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypothesis
Ref Expression
wunex3.u 𝑈 = (𝑅1‘((rank‘𝐴) +o ω))
Assertion
Ref Expression
wunex3 (𝐴𝑉 → (𝑈 ∈ WUni ∧ 𝐴𝑈))

Proof of Theorem wunex3
StepHypRef Expression
1 r1rankid 9716 . . 3 (𝐴𝑉𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
2 rankon 9652 . . . . . 6 (rank‘𝐴) ∈ On
3 omelon 9503 . . . . . 6 ω ∈ On
4 oacl 8436 . . . . . 6 (((rank‘𝐴) ∈ On ∧ ω ∈ On) → ((rank‘𝐴) +o ω) ∈ On)
52, 3, 4mp2an 689 . . . . 5 ((rank‘𝐴) +o ω) ∈ On
6 peano1 7803 . . . . . 6 ∅ ∈ ω
7 oaord1 8453 . . . . . . 7 (((rank‘𝐴) ∈ On ∧ ω ∈ On) → (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω)))
82, 3, 7mp2an 689 . . . . . 6 (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω))
96, 8mpbi 229 . . . . 5 (rank‘𝐴) ∈ ((rank‘𝐴) +o ω)
10 r1ord2 9638 . . . . 5 (((rank‘𝐴) +o ω) ∈ On → ((rank‘𝐴) ∈ ((rank‘𝐴) +o ω) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +o ω))))
115, 9, 10mp2 9 . . . 4 (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +o ω))
12 wunex3.u . . . 4 𝑈 = (𝑅1‘((rank‘𝐴) +o ω))
1311, 12sseqtrri 3969 . . 3 (𝑅1‘(rank‘𝐴)) ⊆ 𝑈
141, 13sstrdi 3944 . 2 (𝐴𝑉𝐴𝑈)
15 limom 7796 . . . . . 6 Lim ω
163, 15pm3.2i 471 . . . . 5 (ω ∈ On ∧ Lim ω)
17 oalimcl 8462 . . . . 5 (((rank‘𝐴) ∈ On ∧ (ω ∈ On ∧ Lim ω)) → Lim ((rank‘𝐴) +o ω))
182, 16, 17mp2an 689 . . . 4 Lim ((rank‘𝐴) +o ω)
19 r1limwun 10593 . . . 4 ((((rank‘𝐴) +o ω) ∈ On ∧ Lim ((rank‘𝐴) +o ω)) → (𝑅1‘((rank‘𝐴) +o ω)) ∈ WUni)
205, 18, 19mp2an 689 . . 3 (𝑅1‘((rank‘𝐴) +o ω)) ∈ WUni
2112, 20eqeltri 2833 . 2 𝑈 ∈ WUni
2214, 21jctil 520 1 (𝐴𝑉 → (𝑈 ∈ WUni ∧ 𝐴𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wss 3898  c0 4269  Oncon0 6302  Lim wlim 6303  cfv 6479  (class class class)co 7337  ωcom 7780   +o coa 8364  𝑅1cr1 9619  rankcrnk 9620  WUnicwun 10557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-reg 9449  ax-inf2 9498
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-oadd 8371  df-r1 9621  df-rank 9622  df-wun 10559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator