| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunex3 | Structured version Visualization version GIF version | ||
| Description: Construct a weak universe from a given set. This version of wunex 10633 has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wunex3.u | ⊢ 𝑈 = (𝑅1‘((rank‘𝐴) +o ω)) |
| Ref | Expression |
|---|---|
| wunex3 | ⊢ (𝐴 ∈ 𝑉 → (𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1rankid 9755 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | |
| 2 | rankon 9691 | . . . . . 6 ⊢ (rank‘𝐴) ∈ On | |
| 3 | omelon 9542 | . . . . . 6 ⊢ ω ∈ On | |
| 4 | oacl 8453 | . . . . . 6 ⊢ (((rank‘𝐴) ∈ On ∧ ω ∈ On) → ((rank‘𝐴) +o ω) ∈ On) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . . 5 ⊢ ((rank‘𝐴) +o ω) ∈ On |
| 6 | peano1 7822 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 7 | oaord1 8469 | . . . . . . 7 ⊢ (((rank‘𝐴) ∈ On ∧ ω ∈ On) → (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω))) | |
| 8 | 2, 3, 7 | mp2an 692 | . . . . . 6 ⊢ (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω)) |
| 9 | 6, 8 | mpbi 230 | . . . . 5 ⊢ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω) |
| 10 | r1ord2 9677 | . . . . 5 ⊢ (((rank‘𝐴) +o ω) ∈ On → ((rank‘𝐴) ∈ ((rank‘𝐴) +o ω) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +o ω)))) | |
| 11 | 5, 9, 10 | mp2 9 | . . . 4 ⊢ (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +o ω)) |
| 12 | wunex3.u | . . . 4 ⊢ 𝑈 = (𝑅1‘((rank‘𝐴) +o ω)) | |
| 13 | 11, 12 | sseqtrri 3985 | . . 3 ⊢ (𝑅1‘(rank‘𝐴)) ⊆ 𝑈 |
| 14 | 1, 13 | sstrdi 3948 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ 𝑈) |
| 15 | limom 7815 | . . . . . 6 ⊢ Lim ω | |
| 16 | 3, 15 | pm3.2i 470 | . . . . 5 ⊢ (ω ∈ On ∧ Lim ω) |
| 17 | oalimcl 8478 | . . . . 5 ⊢ (((rank‘𝐴) ∈ On ∧ (ω ∈ On ∧ Lim ω)) → Lim ((rank‘𝐴) +o ω)) | |
| 18 | 2, 16, 17 | mp2an 692 | . . . 4 ⊢ Lim ((rank‘𝐴) +o ω) |
| 19 | r1limwun 10630 | . . . 4 ⊢ ((((rank‘𝐴) +o ω) ∈ On ∧ Lim ((rank‘𝐴) +o ω)) → (𝑅1‘((rank‘𝐴) +o ω)) ∈ WUni) | |
| 20 | 5, 18, 19 | mp2an 692 | . . 3 ⊢ (𝑅1‘((rank‘𝐴) +o ω)) ∈ WUni |
| 21 | 12, 20 | eqeltri 2824 | . 2 ⊢ 𝑈 ∈ WUni |
| 22 | 14, 21 | jctil 519 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ∅c0 4284 Oncon0 6307 Lim wlim 6308 ‘cfv 6482 (class class class)co 7349 ωcom 7799 +o coa 8385 𝑅1cr1 9658 rankcrnk 9659 WUnicwun 10594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-reg 9484 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-oadd 8392 df-r1 9660 df-rank 9661 df-wun 10596 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |