Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wunex3 | Structured version Visualization version GIF version |
Description: Construct a weak universe from a given set. This version of wunex 10495 has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wunex3.u | ⊢ 𝑈 = (𝑅1‘((rank‘𝐴) +o ω)) |
Ref | Expression |
---|---|
wunex3 | ⊢ (𝐴 ∈ 𝑉 → (𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1rankid 9617 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | |
2 | rankon 9553 | . . . . . 6 ⊢ (rank‘𝐴) ∈ On | |
3 | omelon 9404 | . . . . . 6 ⊢ ω ∈ On | |
4 | oacl 8365 | . . . . . 6 ⊢ (((rank‘𝐴) ∈ On ∧ ω ∈ On) → ((rank‘𝐴) +o ω) ∈ On) | |
5 | 2, 3, 4 | mp2an 689 | . . . . 5 ⊢ ((rank‘𝐴) +o ω) ∈ On |
6 | peano1 7735 | . . . . . 6 ⊢ ∅ ∈ ω | |
7 | oaord1 8382 | . . . . . . 7 ⊢ (((rank‘𝐴) ∈ On ∧ ω ∈ On) → (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω))) | |
8 | 2, 3, 7 | mp2an 689 | . . . . . 6 ⊢ (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω)) |
9 | 6, 8 | mpbi 229 | . . . . 5 ⊢ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω) |
10 | r1ord2 9539 | . . . . 5 ⊢ (((rank‘𝐴) +o ω) ∈ On → ((rank‘𝐴) ∈ ((rank‘𝐴) +o ω) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +o ω)))) | |
11 | 5, 9, 10 | mp2 9 | . . . 4 ⊢ (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +o ω)) |
12 | wunex3.u | . . . 4 ⊢ 𝑈 = (𝑅1‘((rank‘𝐴) +o ω)) | |
13 | 11, 12 | sseqtrri 3958 | . . 3 ⊢ (𝑅1‘(rank‘𝐴)) ⊆ 𝑈 |
14 | 1, 13 | sstrdi 3933 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ 𝑈) |
15 | limom 7728 | . . . . . 6 ⊢ Lim ω | |
16 | 3, 15 | pm3.2i 471 | . . . . 5 ⊢ (ω ∈ On ∧ Lim ω) |
17 | oalimcl 8391 | . . . . 5 ⊢ (((rank‘𝐴) ∈ On ∧ (ω ∈ On ∧ Lim ω)) → Lim ((rank‘𝐴) +o ω)) | |
18 | 2, 16, 17 | mp2an 689 | . . . 4 ⊢ Lim ((rank‘𝐴) +o ω) |
19 | r1limwun 10492 | . . . 4 ⊢ ((((rank‘𝐴) +o ω) ∈ On ∧ Lim ((rank‘𝐴) +o ω)) → (𝑅1‘((rank‘𝐴) +o ω)) ∈ WUni) | |
20 | 5, 18, 19 | mp2an 689 | . . 3 ⊢ (𝑅1‘((rank‘𝐴) +o ω)) ∈ WUni |
21 | 12, 20 | eqeltri 2835 | . 2 ⊢ 𝑈 ∈ WUni |
22 | 14, 21 | jctil 520 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ∅c0 4256 Oncon0 6266 Lim wlim 6267 ‘cfv 6433 (class class class)co 7275 ωcom 7712 +o coa 8294 𝑅1cr1 9520 rankcrnk 9521 WUnicwun 10456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-reg 9351 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-oadd 8301 df-r1 9522 df-rank 9523 df-wun 10458 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |