| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunex3 | Structured version Visualization version GIF version | ||
| Description: Construct a weak universe from a given set. This version of wunex 10692 has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wunex3.u | ⊢ 𝑈 = (𝑅1‘((rank‘𝐴) +o ω)) |
| Ref | Expression |
|---|---|
| wunex3 | ⊢ (𝐴 ∈ 𝑉 → (𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1rankid 9812 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | |
| 2 | rankon 9748 | . . . . . 6 ⊢ (rank‘𝐴) ∈ On | |
| 3 | omelon 9599 | . . . . . 6 ⊢ ω ∈ On | |
| 4 | oacl 8499 | . . . . . 6 ⊢ (((rank‘𝐴) ∈ On ∧ ω ∈ On) → ((rank‘𝐴) +o ω) ∈ On) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . . 5 ⊢ ((rank‘𝐴) +o ω) ∈ On |
| 6 | peano1 7865 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 7 | oaord1 8515 | . . . . . . 7 ⊢ (((rank‘𝐴) ∈ On ∧ ω ∈ On) → (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω))) | |
| 8 | 2, 3, 7 | mp2an 692 | . . . . . 6 ⊢ (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω)) |
| 9 | 6, 8 | mpbi 230 | . . . . 5 ⊢ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω) |
| 10 | r1ord2 9734 | . . . . 5 ⊢ (((rank‘𝐴) +o ω) ∈ On → ((rank‘𝐴) ∈ ((rank‘𝐴) +o ω) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +o ω)))) | |
| 11 | 5, 9, 10 | mp2 9 | . . . 4 ⊢ (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +o ω)) |
| 12 | wunex3.u | . . . 4 ⊢ 𝑈 = (𝑅1‘((rank‘𝐴) +o ω)) | |
| 13 | 11, 12 | sseqtrri 3996 | . . 3 ⊢ (𝑅1‘(rank‘𝐴)) ⊆ 𝑈 |
| 14 | 1, 13 | sstrdi 3959 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ 𝑈) |
| 15 | limom 7858 | . . . . . 6 ⊢ Lim ω | |
| 16 | 3, 15 | pm3.2i 470 | . . . . 5 ⊢ (ω ∈ On ∧ Lim ω) |
| 17 | oalimcl 8524 | . . . . 5 ⊢ (((rank‘𝐴) ∈ On ∧ (ω ∈ On ∧ Lim ω)) → Lim ((rank‘𝐴) +o ω)) | |
| 18 | 2, 16, 17 | mp2an 692 | . . . 4 ⊢ Lim ((rank‘𝐴) +o ω) |
| 19 | r1limwun 10689 | . . . 4 ⊢ ((((rank‘𝐴) +o ω) ∈ On ∧ Lim ((rank‘𝐴) +o ω)) → (𝑅1‘((rank‘𝐴) +o ω)) ∈ WUni) | |
| 20 | 5, 18, 19 | mp2an 692 | . . 3 ⊢ (𝑅1‘((rank‘𝐴) +o ω)) ∈ WUni |
| 21 | 12, 20 | eqeltri 2824 | . 2 ⊢ 𝑈 ∈ WUni |
| 22 | 14, 21 | jctil 519 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∅c0 4296 Oncon0 6332 Lim wlim 6333 ‘cfv 6511 (class class class)co 7387 ωcom 7842 +o coa 8431 𝑅1cr1 9715 rankcrnk 9716 WUnicwun 10653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-oadd 8438 df-r1 9717 df-rank 9718 df-wun 10655 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |