MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunex3 Structured version   Visualization version   GIF version

Theorem wunex3 10632
Description: Construct a weak universe from a given set. This version of wunex 10630 has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypothesis
Ref Expression
wunex3.u 𝑈 = (𝑅1‘((rank‘𝐴) +o ω))
Assertion
Ref Expression
wunex3 (𝐴𝑉 → (𝑈 ∈ WUni ∧ 𝐴𝑈))

Proof of Theorem wunex3
StepHypRef Expression
1 r1rankid 9752 . . 3 (𝐴𝑉𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
2 rankon 9688 . . . . . 6 (rank‘𝐴) ∈ On
3 omelon 9536 . . . . . 6 ω ∈ On
4 oacl 8450 . . . . . 6 (((rank‘𝐴) ∈ On ∧ ω ∈ On) → ((rank‘𝐴) +o ω) ∈ On)
52, 3, 4mp2an 692 . . . . 5 ((rank‘𝐴) +o ω) ∈ On
6 peano1 7819 . . . . . 6 ∅ ∈ ω
7 oaord1 8466 . . . . . . 7 (((rank‘𝐴) ∈ On ∧ ω ∈ On) → (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω)))
82, 3, 7mp2an 692 . . . . . 6 (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω))
96, 8mpbi 230 . . . . 5 (rank‘𝐴) ∈ ((rank‘𝐴) +o ω)
10 r1ord2 9674 . . . . 5 (((rank‘𝐴) +o ω) ∈ On → ((rank‘𝐴) ∈ ((rank‘𝐴) +o ω) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +o ω))))
115, 9, 10mp2 9 . . . 4 (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +o ω))
12 wunex3.u . . . 4 𝑈 = (𝑅1‘((rank‘𝐴) +o ω))
1311, 12sseqtrri 3979 . . 3 (𝑅1‘(rank‘𝐴)) ⊆ 𝑈
141, 13sstrdi 3942 . 2 (𝐴𝑉𝐴𝑈)
15 limom 7812 . . . . . 6 Lim ω
163, 15pm3.2i 470 . . . . 5 (ω ∈ On ∧ Lim ω)
17 oalimcl 8475 . . . . 5 (((rank‘𝐴) ∈ On ∧ (ω ∈ On ∧ Lim ω)) → Lim ((rank‘𝐴) +o ω))
182, 16, 17mp2an 692 . . . 4 Lim ((rank‘𝐴) +o ω)
19 r1limwun 10627 . . . 4 ((((rank‘𝐴) +o ω) ∈ On ∧ Lim ((rank‘𝐴) +o ω)) → (𝑅1‘((rank‘𝐴) +o ω)) ∈ WUni)
205, 18, 19mp2an 692 . . 3 (𝑅1‘((rank‘𝐴) +o ω)) ∈ WUni
2112, 20eqeltri 2827 . 2 𝑈 ∈ WUni
2214, 21jctil 519 1 (𝐴𝑉 → (𝑈 ∈ WUni ∧ 𝐴𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3897  c0 4280  Oncon0 6306  Lim wlim 6307  cfv 6481  (class class class)co 7346  ωcom 7796   +o coa 8382  𝑅1cr1 9655  rankcrnk 9656  WUnicwun 10591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-oadd 8389  df-r1 9657  df-rank 9658  df-wun 10593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator