| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunex3 | Structured version Visualization version GIF version | ||
| Description: Construct a weak universe from a given set. This version of wunex 10753 has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wunex3.u | ⊢ 𝑈 = (𝑅1‘((rank‘𝐴) +o ω)) |
| Ref | Expression |
|---|---|
| wunex3 | ⊢ (𝐴 ∈ 𝑉 → (𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1rankid 9873 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | |
| 2 | rankon 9809 | . . . . . 6 ⊢ (rank‘𝐴) ∈ On | |
| 3 | omelon 9660 | . . . . . 6 ⊢ ω ∈ On | |
| 4 | oacl 8547 | . . . . . 6 ⊢ (((rank‘𝐴) ∈ On ∧ ω ∈ On) → ((rank‘𝐴) +o ω) ∈ On) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . . 5 ⊢ ((rank‘𝐴) +o ω) ∈ On |
| 6 | peano1 7884 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 7 | oaord1 8563 | . . . . . . 7 ⊢ (((rank‘𝐴) ∈ On ∧ ω ∈ On) → (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω))) | |
| 8 | 2, 3, 7 | mp2an 692 | . . . . . 6 ⊢ (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω)) |
| 9 | 6, 8 | mpbi 230 | . . . . 5 ⊢ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω) |
| 10 | r1ord2 9795 | . . . . 5 ⊢ (((rank‘𝐴) +o ω) ∈ On → ((rank‘𝐴) ∈ ((rank‘𝐴) +o ω) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +o ω)))) | |
| 11 | 5, 9, 10 | mp2 9 | . . . 4 ⊢ (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +o ω)) |
| 12 | wunex3.u | . . . 4 ⊢ 𝑈 = (𝑅1‘((rank‘𝐴) +o ω)) | |
| 13 | 11, 12 | sseqtrri 4008 | . . 3 ⊢ (𝑅1‘(rank‘𝐴)) ⊆ 𝑈 |
| 14 | 1, 13 | sstrdi 3971 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ 𝑈) |
| 15 | limom 7877 | . . . . . 6 ⊢ Lim ω | |
| 16 | 3, 15 | pm3.2i 470 | . . . . 5 ⊢ (ω ∈ On ∧ Lim ω) |
| 17 | oalimcl 8572 | . . . . 5 ⊢ (((rank‘𝐴) ∈ On ∧ (ω ∈ On ∧ Lim ω)) → Lim ((rank‘𝐴) +o ω)) | |
| 18 | 2, 16, 17 | mp2an 692 | . . . 4 ⊢ Lim ((rank‘𝐴) +o ω) |
| 19 | r1limwun 10750 | . . . 4 ⊢ ((((rank‘𝐴) +o ω) ∈ On ∧ Lim ((rank‘𝐴) +o ω)) → (𝑅1‘((rank‘𝐴) +o ω)) ∈ WUni) | |
| 20 | 5, 18, 19 | mp2an 692 | . . 3 ⊢ (𝑅1‘((rank‘𝐴) +o ω)) ∈ WUni |
| 21 | 12, 20 | eqeltri 2830 | . 2 ⊢ 𝑈 ∈ WUni |
| 22 | 14, 21 | jctil 519 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∅c0 4308 Oncon0 6352 Lim wlim 6353 ‘cfv 6531 (class class class)co 7405 ωcom 7861 +o coa 8477 𝑅1cr1 9776 rankcrnk 9777 WUnicwun 10714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-reg 9606 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-oadd 8484 df-r1 9778 df-rank 9779 df-wun 10716 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |