MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunex3 Structured version   Visualization version   GIF version

Theorem wunex3 10755
Description: Construct a weak universe from a given set. This version of wunex 10753 has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypothesis
Ref Expression
wunex3.u 𝑈 = (𝑅1‘((rank‘𝐴) +o ω))
Assertion
Ref Expression
wunex3 (𝐴𝑉 → (𝑈 ∈ WUni ∧ 𝐴𝑈))

Proof of Theorem wunex3
StepHypRef Expression
1 r1rankid 9873 . . 3 (𝐴𝑉𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
2 rankon 9809 . . . . . 6 (rank‘𝐴) ∈ On
3 omelon 9660 . . . . . 6 ω ∈ On
4 oacl 8547 . . . . . 6 (((rank‘𝐴) ∈ On ∧ ω ∈ On) → ((rank‘𝐴) +o ω) ∈ On)
52, 3, 4mp2an 692 . . . . 5 ((rank‘𝐴) +o ω) ∈ On
6 peano1 7884 . . . . . 6 ∅ ∈ ω
7 oaord1 8563 . . . . . . 7 (((rank‘𝐴) ∈ On ∧ ω ∈ On) → (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω)))
82, 3, 7mp2an 692 . . . . . 6 (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω))
96, 8mpbi 230 . . . . 5 (rank‘𝐴) ∈ ((rank‘𝐴) +o ω)
10 r1ord2 9795 . . . . 5 (((rank‘𝐴) +o ω) ∈ On → ((rank‘𝐴) ∈ ((rank‘𝐴) +o ω) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +o ω))))
115, 9, 10mp2 9 . . . 4 (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +o ω))
12 wunex3.u . . . 4 𝑈 = (𝑅1‘((rank‘𝐴) +o ω))
1311, 12sseqtrri 4008 . . 3 (𝑅1‘(rank‘𝐴)) ⊆ 𝑈
141, 13sstrdi 3971 . 2 (𝐴𝑉𝐴𝑈)
15 limom 7877 . . . . . 6 Lim ω
163, 15pm3.2i 470 . . . . 5 (ω ∈ On ∧ Lim ω)
17 oalimcl 8572 . . . . 5 (((rank‘𝐴) ∈ On ∧ (ω ∈ On ∧ Lim ω)) → Lim ((rank‘𝐴) +o ω))
182, 16, 17mp2an 692 . . . 4 Lim ((rank‘𝐴) +o ω)
19 r1limwun 10750 . . . 4 ((((rank‘𝐴) +o ω) ∈ On ∧ Lim ((rank‘𝐴) +o ω)) → (𝑅1‘((rank‘𝐴) +o ω)) ∈ WUni)
205, 18, 19mp2an 692 . . 3 (𝑅1‘((rank‘𝐴) +o ω)) ∈ WUni
2112, 20eqeltri 2830 . 2 𝑈 ∈ WUni
2214, 21jctil 519 1 (𝐴𝑉 → (𝑈 ∈ WUni ∧ 𝐴𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wss 3926  c0 4308  Oncon0 6352  Lim wlim 6353  cfv 6531  (class class class)co 7405  ωcom 7861   +o coa 8477  𝑅1cr1 9776  rankcrnk 9777  WUnicwun 10714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-reg 9606  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-oadd 8484  df-r1 9778  df-rank 9779  df-wun 10716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator