Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wunex3 | Structured version Visualization version GIF version |
Description: Construct a weak universe from a given set. This version of wunex 10596 has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wunex3.u | ⊢ 𝑈 = (𝑅1‘((rank‘𝐴) +o ω)) |
Ref | Expression |
---|---|
wunex3 | ⊢ (𝐴 ∈ 𝑉 → (𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1rankid 9716 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | |
2 | rankon 9652 | . . . . . 6 ⊢ (rank‘𝐴) ∈ On | |
3 | omelon 9503 | . . . . . 6 ⊢ ω ∈ On | |
4 | oacl 8436 | . . . . . 6 ⊢ (((rank‘𝐴) ∈ On ∧ ω ∈ On) → ((rank‘𝐴) +o ω) ∈ On) | |
5 | 2, 3, 4 | mp2an 689 | . . . . 5 ⊢ ((rank‘𝐴) +o ω) ∈ On |
6 | peano1 7803 | . . . . . 6 ⊢ ∅ ∈ ω | |
7 | oaord1 8453 | . . . . . . 7 ⊢ (((rank‘𝐴) ∈ On ∧ ω ∈ On) → (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω))) | |
8 | 2, 3, 7 | mp2an 689 | . . . . . 6 ⊢ (∅ ∈ ω ↔ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω)) |
9 | 6, 8 | mpbi 229 | . . . . 5 ⊢ (rank‘𝐴) ∈ ((rank‘𝐴) +o ω) |
10 | r1ord2 9638 | . . . . 5 ⊢ (((rank‘𝐴) +o ω) ∈ On → ((rank‘𝐴) ∈ ((rank‘𝐴) +o ω) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +o ω)))) | |
11 | 5, 9, 10 | mp2 9 | . . . 4 ⊢ (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) +o ω)) |
12 | wunex3.u | . . . 4 ⊢ 𝑈 = (𝑅1‘((rank‘𝐴) +o ω)) | |
13 | 11, 12 | sseqtrri 3969 | . . 3 ⊢ (𝑅1‘(rank‘𝐴)) ⊆ 𝑈 |
14 | 1, 13 | sstrdi 3944 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ 𝑈) |
15 | limom 7796 | . . . . . 6 ⊢ Lim ω | |
16 | 3, 15 | pm3.2i 471 | . . . . 5 ⊢ (ω ∈ On ∧ Lim ω) |
17 | oalimcl 8462 | . . . . 5 ⊢ (((rank‘𝐴) ∈ On ∧ (ω ∈ On ∧ Lim ω)) → Lim ((rank‘𝐴) +o ω)) | |
18 | 2, 16, 17 | mp2an 689 | . . . 4 ⊢ Lim ((rank‘𝐴) +o ω) |
19 | r1limwun 10593 | . . . 4 ⊢ ((((rank‘𝐴) +o ω) ∈ On ∧ Lim ((rank‘𝐴) +o ω)) → (𝑅1‘((rank‘𝐴) +o ω)) ∈ WUni) | |
20 | 5, 18, 19 | mp2an 689 | . . 3 ⊢ (𝑅1‘((rank‘𝐴) +o ω)) ∈ WUni |
21 | 12, 20 | eqeltri 2833 | . 2 ⊢ 𝑈 ∈ WUni |
22 | 14, 21 | jctil 520 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊆ wss 3898 ∅c0 4269 Oncon0 6302 Lim wlim 6303 ‘cfv 6479 (class class class)co 7337 ωcom 7780 +o coa 8364 𝑅1cr1 9619 rankcrnk 9620 WUnicwun 10557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-reg 9449 ax-inf2 9498 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-oadd 8371 df-r1 9621 df-rank 9622 df-wun 10559 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |