MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunex3 Structured version   Visualization version   GIF version

Theorem wunex3 10740
Description: Construct a weak universe from a given set. This version of wunex 10738 has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypothesis
Ref Expression
wunex3.u π‘ˆ = (𝑅1β€˜((rankβ€˜π΄) +o Ο‰))
Assertion
Ref Expression
wunex3 (𝐴 ∈ 𝑉 β†’ (π‘ˆ ∈ WUni ∧ 𝐴 βŠ† π‘ˆ))

Proof of Theorem wunex3
StepHypRef Expression
1 r1rankid 9858 . . 3 (𝐴 ∈ 𝑉 β†’ 𝐴 βŠ† (𝑅1β€˜(rankβ€˜π΄)))
2 rankon 9794 . . . . . 6 (rankβ€˜π΄) ∈ On
3 omelon 9645 . . . . . 6 Ο‰ ∈ On
4 oacl 8539 . . . . . 6 (((rankβ€˜π΄) ∈ On ∧ Ο‰ ∈ On) β†’ ((rankβ€˜π΄) +o Ο‰) ∈ On)
52, 3, 4mp2an 688 . . . . 5 ((rankβ€˜π΄) +o Ο‰) ∈ On
6 peano1 7883 . . . . . 6 βˆ… ∈ Ο‰
7 oaord1 8555 . . . . . . 7 (((rankβ€˜π΄) ∈ On ∧ Ο‰ ∈ On) β†’ (βˆ… ∈ Ο‰ ↔ (rankβ€˜π΄) ∈ ((rankβ€˜π΄) +o Ο‰)))
82, 3, 7mp2an 688 . . . . . 6 (βˆ… ∈ Ο‰ ↔ (rankβ€˜π΄) ∈ ((rankβ€˜π΄) +o Ο‰))
96, 8mpbi 229 . . . . 5 (rankβ€˜π΄) ∈ ((rankβ€˜π΄) +o Ο‰)
10 r1ord2 9780 . . . . 5 (((rankβ€˜π΄) +o Ο‰) ∈ On β†’ ((rankβ€˜π΄) ∈ ((rankβ€˜π΄) +o Ο‰) β†’ (𝑅1β€˜(rankβ€˜π΄)) βŠ† (𝑅1β€˜((rankβ€˜π΄) +o Ο‰))))
115, 9, 10mp2 9 . . . 4 (𝑅1β€˜(rankβ€˜π΄)) βŠ† (𝑅1β€˜((rankβ€˜π΄) +o Ο‰))
12 wunex3.u . . . 4 π‘ˆ = (𝑅1β€˜((rankβ€˜π΄) +o Ο‰))
1311, 12sseqtrri 4020 . . 3 (𝑅1β€˜(rankβ€˜π΄)) βŠ† π‘ˆ
141, 13sstrdi 3995 . 2 (𝐴 ∈ 𝑉 β†’ 𝐴 βŠ† π‘ˆ)
15 limom 7875 . . . . . 6 Lim Ο‰
163, 15pm3.2i 469 . . . . 5 (Ο‰ ∈ On ∧ Lim Ο‰)
17 oalimcl 8564 . . . . 5 (((rankβ€˜π΄) ∈ On ∧ (Ο‰ ∈ On ∧ Lim Ο‰)) β†’ Lim ((rankβ€˜π΄) +o Ο‰))
182, 16, 17mp2an 688 . . . 4 Lim ((rankβ€˜π΄) +o Ο‰)
19 r1limwun 10735 . . . 4 ((((rankβ€˜π΄) +o Ο‰) ∈ On ∧ Lim ((rankβ€˜π΄) +o Ο‰)) β†’ (𝑅1β€˜((rankβ€˜π΄) +o Ο‰)) ∈ WUni)
205, 18, 19mp2an 688 . . 3 (𝑅1β€˜((rankβ€˜π΄) +o Ο‰)) ∈ WUni
2112, 20eqeltri 2827 . 2 π‘ˆ ∈ WUni
2214, 21jctil 518 1 (𝐴 ∈ 𝑉 β†’ (π‘ˆ ∈ WUni ∧ 𝐴 βŠ† π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104   βŠ† wss 3949  βˆ…c0 4323  Oncon0 6365  Lim wlim 6366  β€˜cfv 6544  (class class class)co 7413  Ο‰com 7859   +o coa 8467  π‘…1cr1 9761  rankcrnk 9762  WUnicwun 10699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-reg 9591  ax-inf2 9640
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-oadd 8474  df-r1 9763  df-rank 9764  df-wun 10701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator