![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunex3 | Structured version Visualization version GIF version |
Description: Construct a weak universe from a given set. This version of wunex 10738 has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wunex3.u | β’ π = (π 1β((rankβπ΄) +o Ο)) |
Ref | Expression |
---|---|
wunex3 | β’ (π΄ β π β (π β WUni β§ π΄ β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1rankid 9858 | . . 3 β’ (π΄ β π β π΄ β (π 1β(rankβπ΄))) | |
2 | rankon 9794 | . . . . . 6 β’ (rankβπ΄) β On | |
3 | omelon 9645 | . . . . . 6 β’ Ο β On | |
4 | oacl 8539 | . . . . . 6 β’ (((rankβπ΄) β On β§ Ο β On) β ((rankβπ΄) +o Ο) β On) | |
5 | 2, 3, 4 | mp2an 688 | . . . . 5 β’ ((rankβπ΄) +o Ο) β On |
6 | peano1 7883 | . . . . . 6 β’ β β Ο | |
7 | oaord1 8555 | . . . . . . 7 β’ (((rankβπ΄) β On β§ Ο β On) β (β β Ο β (rankβπ΄) β ((rankβπ΄) +o Ο))) | |
8 | 2, 3, 7 | mp2an 688 | . . . . . 6 β’ (β β Ο β (rankβπ΄) β ((rankβπ΄) +o Ο)) |
9 | 6, 8 | mpbi 229 | . . . . 5 β’ (rankβπ΄) β ((rankβπ΄) +o Ο) |
10 | r1ord2 9780 | . . . . 5 β’ (((rankβπ΄) +o Ο) β On β ((rankβπ΄) β ((rankβπ΄) +o Ο) β (π 1β(rankβπ΄)) β (π 1β((rankβπ΄) +o Ο)))) | |
11 | 5, 9, 10 | mp2 9 | . . . 4 β’ (π 1β(rankβπ΄)) β (π 1β((rankβπ΄) +o Ο)) |
12 | wunex3.u | . . . 4 β’ π = (π 1β((rankβπ΄) +o Ο)) | |
13 | 11, 12 | sseqtrri 4020 | . . 3 β’ (π 1β(rankβπ΄)) β π |
14 | 1, 13 | sstrdi 3995 | . 2 β’ (π΄ β π β π΄ β π) |
15 | limom 7875 | . . . . . 6 β’ Lim Ο | |
16 | 3, 15 | pm3.2i 469 | . . . . 5 β’ (Ο β On β§ Lim Ο) |
17 | oalimcl 8564 | . . . . 5 β’ (((rankβπ΄) β On β§ (Ο β On β§ Lim Ο)) β Lim ((rankβπ΄) +o Ο)) | |
18 | 2, 16, 17 | mp2an 688 | . . . 4 β’ Lim ((rankβπ΄) +o Ο) |
19 | r1limwun 10735 | . . . 4 β’ ((((rankβπ΄) +o Ο) β On β§ Lim ((rankβπ΄) +o Ο)) β (π 1β((rankβπ΄) +o Ο)) β WUni) | |
20 | 5, 18, 19 | mp2an 688 | . . 3 β’ (π 1β((rankβπ΄) +o Ο)) β WUni |
21 | 12, 20 | eqeltri 2827 | . 2 β’ π β WUni |
22 | 14, 21 | jctil 518 | 1 β’ (π΄ β π β (π β WUni β§ π΄ β π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 β wss 3949 β c0 4323 Oncon0 6365 Lim wlim 6366 βcfv 6544 (class class class)co 7413 Οcom 7859 +o coa 8467 π 1cr1 9761 rankcrnk 9762 WUnicwun 10699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-reg 9591 ax-inf2 9640 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-oadd 8474 df-r1 9763 df-rank 9764 df-wun 10701 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |