![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uznn0sub | Structured version Visualization version GIF version |
Description: The nonnegative difference of integers is a nonnegative integer. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
uznn0sub | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 12874 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
2 | znn0sub 12655 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) | |
3 | 2 | biimp3a 1466 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑁 − 𝑀) ∈ ℕ0) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 ∈ wcel 2099 class class class wbr 5145 ‘cfv 6546 (class class class)co 7416 ≤ cle 11290 − cmin 11485 ℕ0cn0 12518 ℤcz 12604 ℤ≥cuz 12868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-n0 12519 df-z 12605 df-uz 12869 |
This theorem is referenced by: fznn0sub 13581 elfzmlbm 13659 fzen2 13983 fzfi 13986 leexp2a 14185 hashfz 14439 ccatrn 14592 swrds2m 14945 isercoll2 15668 iseralt 15684 cvgrat 15882 fprodser 15946 dvdsexp 16325 bitsshft 16470 prmm2nn0 16694 hashdvds 16772 prmdiv 16782 prmdiveq 16783 pcaddlem 16885 vdwlem5 16982 vdwlem8 16985 dvn2bss 25948 aaliou3lem2 26368 lgsquadlem1 27406 crctcshwlkn0lem5 29745 clwwlknonex2lem1 30037 clwwlknonex2lem2 30038 numclwlk1lem2 30300 numclwwlk3lem1 30312 fiblem 34245 signstfveq0 34436 irrapxlem3 42518 itgsinexp 45612 wallispilem3 45724 fmtnorec3 47156 fmtnorec4 47157 |
Copyright terms: Public domain | W3C validator |