MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uznn0sub Structured version   Visualization version   GIF version

Theorem uznn0sub 12811
Description: The nonnegative difference of integers is a nonnegative integer. (Contributed by NM, 4-Sep-2005.)
Assertion
Ref Expression
uznn0sub (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)

Proof of Theorem uznn0sub
StepHypRef Expression
1 eluz2 12778 . 2 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
2 znn0sub 12559 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
32biimp3a 1471 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁𝑀) ∈ ℕ0)
41, 3sylbi 217 1 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109   class class class wbr 5102  cfv 6500  (class class class)co 7370  cle 11188  cmin 11384  0cn0 12421  cz 12508  cuz 12772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-om 7824  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-er 8649  df-en 8897  df-dom 8898  df-sdom 8899  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-nn 12166  df-n0 12422  df-z 12509  df-uz 12773
This theorem is referenced by:  fznn0sub  13496  elfzmlbm  13578  fzen2  13913  fzfi  13916  leexp2a  14116  hashfz  14371  ccatrn  14533  swrds2m  14885  isercoll2  15613  iseralt  15629  cvgrat  15827  fprodser  15893  dvdsexp  16276  bitsshft  16423  prmm2nn0  16646  hashdvds  16723  prmdiv  16733  prmdiveq  16734  pcaddlem  16837  vdwlem5  16934  vdwlem8  16937  dvn2bss  25867  aaliou3lem2  26286  lgsquadlem1  27326  crctcshwlkn0lem5  29796  clwwlknonex2lem1  30088  clwwlknonex2lem2  30089  numclwlk1lem2  30351  numclwwlk3lem1  30363  fiblem  34384  signstfveq0  34563  irrapxlem3  42807  itgsinexp  45948  wallispilem3  46060  fmtnorec3  47544  fmtnorec4  47545
  Copyright terms: Public domain W3C validator