| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trfr | Structured version Visualization version GIF version | ||
| Description: A transitive class well-founded by ∈ is a subclass of the class of well-founded sets. Part of Lemma I.9.21 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| trfr | ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epse 5623 | . . . . 5 ⊢ E Se 𝐴 | |
| 2 | r19.21v 3159 | . . . . . . 7 ⊢ (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)(Tr 𝐴 → 𝑧 ∈ ∪ (𝑅1 “ On)) ↔ (Tr 𝐴 → ∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On))) | |
| 3 | trpred 6307 | . . . . . . . . . . 11 ⊢ ((Tr 𝐴 ∧ 𝑦 ∈ 𝐴) → Pred( E , 𝐴, 𝑦) = 𝑦) | |
| 4 | raleq 3298 | . . . . . . . . . . . . 13 ⊢ (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ ∀𝑧 ∈ 𝑦 𝑧 ∈ ∪ (𝑅1 “ On))) | |
| 5 | dfss3 3938 | . . . . . . . . . . . . 13 ⊢ (𝑦 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑧 ∈ 𝑦 𝑧 ∈ ∪ (𝑅1 “ On)) | |
| 6 | 4, 5 | bitr4di 289 | . . . . . . . . . . . 12 ⊢ (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ⊆ ∪ (𝑅1 “ On))) |
| 7 | vex 3454 | . . . . . . . . . . . . 13 ⊢ 𝑦 ∈ V | |
| 8 | 7 | r1elss 9766 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ⊆ ∪ (𝑅1 “ On)) |
| 9 | 6, 8 | bitr4di 289 | . . . . . . . . . . 11 ⊢ (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 10 | 3, 9 | syl 17 | . . . . . . . . . 10 ⊢ ((Tr 𝐴 ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 11 | 10 | biimpd 229 | . . . . . . . . 9 ⊢ ((Tr 𝐴 ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) → 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 12 | 11 | expcom 413 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → (Tr 𝐴 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) → 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 13 | 12 | a2d 29 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → ((Tr 𝐴 → ∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On)) → (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 14 | 2, 13 | biimtrid 242 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)(Tr 𝐴 → 𝑧 ∈ ∪ (𝑅1 “ On)) → (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 15 | eleq1w 2812 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ ∪ (𝑅1 “ On) ↔ 𝑧 ∈ ∪ (𝑅1 “ On))) | |
| 16 | 15 | imbi2d 340 | . . . . . 6 ⊢ (𝑦 = 𝑧 → ((Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)) ↔ (Tr 𝐴 → 𝑧 ∈ ∪ (𝑅1 “ On)))) |
| 17 | 14, 16 | frins2 9714 | . . . . 5 ⊢ (( E Fr 𝐴 ∧ E Se 𝐴) → ∀𝑦 ∈ 𝐴 (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 18 | 1, 17 | mpan2 691 | . . . 4 ⊢ ( E Fr 𝐴 → ∀𝑦 ∈ 𝐴 (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 19 | r19.21v 3159 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)) ↔ (Tr 𝐴 → ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On))) | |
| 20 | 18, 19 | sylib 218 | . . 3 ⊢ ( E Fr 𝐴 → (Tr 𝐴 → ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 21 | dfss3 3938 | . . 3 ⊢ (𝐴 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On)) | |
| 22 | 20, 21 | imbitrrdi 252 | . 2 ⊢ ( E Fr 𝐴 → (Tr 𝐴 → 𝐴 ⊆ ∪ (𝑅1 “ On))) |
| 23 | 22 | impcom 407 | 1 ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ∪ cuni 4874 Tr wtr 5217 E cep 5540 Fr wfr 5591 Se wse 5592 “ cima 5644 Predcpred 6276 Oncon0 6335 𝑅1cr1 9722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-ttrcl 9668 df-r1 9724 |
| This theorem is referenced by: tcfr 44960 |
| Copyright terms: Public domain | W3C validator |