| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trfr | Structured version Visualization version GIF version | ||
| Description: A transitive class well-founded by ∈ is a subclass of the class of well-founded sets. Part of Lemma I.9.21 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| trfr | ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epse 5636 | . . . . 5 ⊢ E Se 𝐴 | |
| 2 | r19.21v 3165 | . . . . . . 7 ⊢ (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)(Tr 𝐴 → 𝑧 ∈ ∪ (𝑅1 “ On)) ↔ (Tr 𝐴 → ∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On))) | |
| 3 | trpred 6320 | . . . . . . . . . . 11 ⊢ ((Tr 𝐴 ∧ 𝑦 ∈ 𝐴) → Pred( E , 𝐴, 𝑦) = 𝑦) | |
| 4 | raleq 3302 | . . . . . . . . . . . . 13 ⊢ (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ ∀𝑧 ∈ 𝑦 𝑧 ∈ ∪ (𝑅1 “ On))) | |
| 5 | dfss3 3947 | . . . . . . . . . . . . 13 ⊢ (𝑦 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑧 ∈ 𝑦 𝑧 ∈ ∪ (𝑅1 “ On)) | |
| 6 | 4, 5 | bitr4di 289 | . . . . . . . . . . . 12 ⊢ (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ⊆ ∪ (𝑅1 “ On))) |
| 7 | vex 3463 | . . . . . . . . . . . . 13 ⊢ 𝑦 ∈ V | |
| 8 | 7 | r1elss 9818 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ⊆ ∪ (𝑅1 “ On)) |
| 9 | 6, 8 | bitr4di 289 | . . . . . . . . . . 11 ⊢ (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 10 | 3, 9 | syl 17 | . . . . . . . . . 10 ⊢ ((Tr 𝐴 ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 11 | 10 | biimpd 229 | . . . . . . . . 9 ⊢ ((Tr 𝐴 ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) → 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 12 | 11 | expcom 413 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → (Tr 𝐴 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) → 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 13 | 12 | a2d 29 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → ((Tr 𝐴 → ∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On)) → (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 14 | 2, 13 | biimtrid 242 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)(Tr 𝐴 → 𝑧 ∈ ∪ (𝑅1 “ On)) → (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 15 | eleq1w 2817 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ ∪ (𝑅1 “ On) ↔ 𝑧 ∈ ∪ (𝑅1 “ On))) | |
| 16 | 15 | imbi2d 340 | . . . . . 6 ⊢ (𝑦 = 𝑧 → ((Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)) ↔ (Tr 𝐴 → 𝑧 ∈ ∪ (𝑅1 “ On)))) |
| 17 | 14, 16 | frins2 9766 | . . . . 5 ⊢ (( E Fr 𝐴 ∧ E Se 𝐴) → ∀𝑦 ∈ 𝐴 (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 18 | 1, 17 | mpan2 691 | . . . 4 ⊢ ( E Fr 𝐴 → ∀𝑦 ∈ 𝐴 (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 19 | r19.21v 3165 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)) ↔ (Tr 𝐴 → ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On))) | |
| 20 | 18, 19 | sylib 218 | . . 3 ⊢ ( E Fr 𝐴 → (Tr 𝐴 → ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 21 | dfss3 3947 | . . 3 ⊢ (𝐴 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On)) | |
| 22 | 20, 21 | imbitrrdi 252 | . 2 ⊢ ( E Fr 𝐴 → (Tr 𝐴 → 𝐴 ⊆ ∪ (𝑅1 “ On))) |
| 23 | 22 | impcom 407 | 1 ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 ∪ cuni 4883 Tr wtr 5229 E cep 5552 Fr wfr 5603 Se wse 5604 “ cima 5657 Predcpred 6289 Oncon0 6352 𝑅1cr1 9774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-ttrcl 9720 df-r1 9776 |
| This theorem is referenced by: tcfr 44936 |
| Copyright terms: Public domain | W3C validator |