Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trfr Structured version   Visualization version   GIF version

Theorem trfr 44979
Description: A transitive class well-founded by is a subclass of the class of well-founded sets. Part of Lemma I.9.21 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.)
Assertion
Ref Expression
trfr ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 (𝑅1 “ On))

Proof of Theorem trfr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epse 5667 . . . . 5 E Se 𝐴
2 r19.21v 3180 . . . . . . 7 (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)(Tr 𝐴𝑧 (𝑅1 “ On)) ↔ (Tr 𝐴 → ∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On)))
3 trpred 6352 . . . . . . . . . . 11 ((Tr 𝐴𝑦𝐴) → Pred( E , 𝐴, 𝑦) = 𝑦)
4 raleq 3323 . . . . . . . . . . . . 13 (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) ↔ ∀𝑧𝑦 𝑧 (𝑅1 “ On)))
5 dfss3 3972 . . . . . . . . . . . . 13 (𝑦 (𝑅1 “ On) ↔ ∀𝑧𝑦 𝑧 (𝑅1 “ On))
64, 5bitr4di 289 . . . . . . . . . . . 12 (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) ↔ 𝑦 (𝑅1 “ On)))
7 vex 3484 . . . . . . . . . . . . 13 𝑦 ∈ V
87r1elss 9846 . . . . . . . . . . . 12 (𝑦 (𝑅1 “ On) ↔ 𝑦 (𝑅1 “ On))
96, 8bitr4di 289 . . . . . . . . . . 11 (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) ↔ 𝑦 (𝑅1 “ On)))
103, 9syl 17 . . . . . . . . . 10 ((Tr 𝐴𝑦𝐴) → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) ↔ 𝑦 (𝑅1 “ On)))
1110biimpd 229 . . . . . . . . 9 ((Tr 𝐴𝑦𝐴) → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) → 𝑦 (𝑅1 “ On)))
1211expcom 413 . . . . . . . 8 (𝑦𝐴 → (Tr 𝐴 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) → 𝑦 (𝑅1 “ On))))
1312a2d 29 . . . . . . 7 (𝑦𝐴 → ((Tr 𝐴 → ∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On)) → (Tr 𝐴𝑦 (𝑅1 “ On))))
142, 13biimtrid 242 . . . . . 6 (𝑦𝐴 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)(Tr 𝐴𝑧 (𝑅1 “ On)) → (Tr 𝐴𝑦 (𝑅1 “ On))))
15 eleq1w 2824 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 (𝑅1 “ On) ↔ 𝑧 (𝑅1 “ On)))
1615imbi2d 340 . . . . . 6 (𝑦 = 𝑧 → ((Tr 𝐴𝑦 (𝑅1 “ On)) ↔ (Tr 𝐴𝑧 (𝑅1 “ On))))
1714, 16frins2 9794 . . . . 5 (( E Fr 𝐴 ∧ E Se 𝐴) → ∀𝑦𝐴 (Tr 𝐴𝑦 (𝑅1 “ On)))
181, 17mpan2 691 . . . 4 ( E Fr 𝐴 → ∀𝑦𝐴 (Tr 𝐴𝑦 (𝑅1 “ On)))
19 r19.21v 3180 . . . 4 (∀𝑦𝐴 (Tr 𝐴𝑦 (𝑅1 “ On)) ↔ (Tr 𝐴 → ∀𝑦𝐴 𝑦 (𝑅1 “ On)))
2018, 19sylib 218 . . 3 ( E Fr 𝐴 → (Tr 𝐴 → ∀𝑦𝐴 𝑦 (𝑅1 “ On)))
21 dfss3 3972 . . 3 (𝐴 (𝑅1 “ On) ↔ ∀𝑦𝐴 𝑦 (𝑅1 “ On))
2220, 21imbitrrdi 252 . 2 ( E Fr 𝐴 → (Tr 𝐴𝐴 (𝑅1 “ On)))
2322impcom 407 1 ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wss 3951   cuni 4907  Tr wtr 5259   E cep 5583   Fr wfr 5634   Se wse 5635  cima 5688  Predcpred 6320  Oncon0 6384  𝑅1cr1 9802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-ttrcl 9748  df-r1 9804
This theorem is referenced by:  tcfr  44980
  Copyright terms: Public domain W3C validator