Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trfr Structured version   Visualization version   GIF version

Theorem trfr 44921
Description: A transitive class well-founded by is a subclass of the class of well-founded sets. Part of Lemma I.9.21 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.)
Assertion
Ref Expression
trfr ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 (𝑅1 “ On))

Proof of Theorem trfr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epse 5634 . . . . 5 E Se 𝐴
2 r19.21v 3163 . . . . . . 7 (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)(Tr 𝐴𝑧 (𝑅1 “ On)) ↔ (Tr 𝐴 → ∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On)))
3 trpred 6318 . . . . . . . . . . 11 ((Tr 𝐴𝑦𝐴) → Pred( E , 𝐴, 𝑦) = 𝑦)
4 raleq 3300 . . . . . . . . . . . . 13 (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) ↔ ∀𝑧𝑦 𝑧 (𝑅1 “ On)))
5 dfss3 3945 . . . . . . . . . . . . 13 (𝑦 (𝑅1 “ On) ↔ ∀𝑧𝑦 𝑧 (𝑅1 “ On))
64, 5bitr4di 289 . . . . . . . . . . . 12 (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) ↔ 𝑦 (𝑅1 “ On)))
7 vex 3461 . . . . . . . . . . . . 13 𝑦 ∈ V
87r1elss 9813 . . . . . . . . . . . 12 (𝑦 (𝑅1 “ On) ↔ 𝑦 (𝑅1 “ On))
96, 8bitr4di 289 . . . . . . . . . . 11 (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) ↔ 𝑦 (𝑅1 “ On)))
103, 9syl 17 . . . . . . . . . 10 ((Tr 𝐴𝑦𝐴) → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) ↔ 𝑦 (𝑅1 “ On)))
1110biimpd 229 . . . . . . . . 9 ((Tr 𝐴𝑦𝐴) → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) → 𝑦 (𝑅1 “ On)))
1211expcom 413 . . . . . . . 8 (𝑦𝐴 → (Tr 𝐴 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) → 𝑦 (𝑅1 “ On))))
1312a2d 29 . . . . . . 7 (𝑦𝐴 → ((Tr 𝐴 → ∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On)) → (Tr 𝐴𝑦 (𝑅1 “ On))))
142, 13biimtrid 242 . . . . . 6 (𝑦𝐴 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)(Tr 𝐴𝑧 (𝑅1 “ On)) → (Tr 𝐴𝑦 (𝑅1 “ On))))
15 eleq1w 2816 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 (𝑅1 “ On) ↔ 𝑧 (𝑅1 “ On)))
1615imbi2d 340 . . . . . 6 (𝑦 = 𝑧 → ((Tr 𝐴𝑦 (𝑅1 “ On)) ↔ (Tr 𝐴𝑧 (𝑅1 “ On))))
1714, 16frins2 9761 . . . . 5 (( E Fr 𝐴 ∧ E Se 𝐴) → ∀𝑦𝐴 (Tr 𝐴𝑦 (𝑅1 “ On)))
181, 17mpan2 691 . . . 4 ( E Fr 𝐴 → ∀𝑦𝐴 (Tr 𝐴𝑦 (𝑅1 “ On)))
19 r19.21v 3163 . . . 4 (∀𝑦𝐴 (Tr 𝐴𝑦 (𝑅1 “ On)) ↔ (Tr 𝐴 → ∀𝑦𝐴 𝑦 (𝑅1 “ On)))
2018, 19sylib 218 . . 3 ( E Fr 𝐴 → (Tr 𝐴 → ∀𝑦𝐴 𝑦 (𝑅1 “ On)))
21 dfss3 3945 . . 3 (𝐴 (𝑅1 “ On) ↔ ∀𝑦𝐴 𝑦 (𝑅1 “ On))
2220, 21imbitrrdi 252 . 2 ( E Fr 𝐴 → (Tr 𝐴𝐴 (𝑅1 “ On)))
2322impcom 407 1 ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wss 3924   cuni 4881  Tr wtr 5227   E cep 5550   Fr wfr 5601   Se wse 5602  cima 5655  Predcpred 6287  Oncon0 6350  𝑅1cr1 9769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-inf2 9648
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-oadd 8479  df-ttrcl 9715  df-r1 9771
This theorem is referenced by:  tcfr  44922
  Copyright terms: Public domain W3C validator