| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trfr | Structured version Visualization version GIF version | ||
| Description: A transitive class well-founded by ∈ is a subclass of the class of well-founded sets. Part of Lemma I.9.21 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| trfr | ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epse 5601 | . . . . 5 ⊢ E Se 𝐴 | |
| 2 | r19.21v 3157 | . . . . . . 7 ⊢ (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)(Tr 𝐴 → 𝑧 ∈ ∪ (𝑅1 “ On)) ↔ (Tr 𝐴 → ∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On))) | |
| 3 | trpred 6284 | . . . . . . . . . . 11 ⊢ ((Tr 𝐴 ∧ 𝑦 ∈ 𝐴) → Pred( E , 𝐴, 𝑦) = 𝑦) | |
| 4 | raleq 3289 | . . . . . . . . . . . . 13 ⊢ (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ ∀𝑧 ∈ 𝑦 𝑧 ∈ ∪ (𝑅1 “ On))) | |
| 5 | dfss3 3918 | . . . . . . . . . . . . 13 ⊢ (𝑦 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑧 ∈ 𝑦 𝑧 ∈ ∪ (𝑅1 “ On)) | |
| 6 | 4, 5 | bitr4di 289 | . . . . . . . . . . . 12 ⊢ (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ⊆ ∪ (𝑅1 “ On))) |
| 7 | vex 3440 | . . . . . . . . . . . . 13 ⊢ 𝑦 ∈ V | |
| 8 | 7 | r1elss 9705 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ⊆ ∪ (𝑅1 “ On)) |
| 9 | 6, 8 | bitr4di 289 | . . . . . . . . . . 11 ⊢ (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 10 | 3, 9 | syl 17 | . . . . . . . . . 10 ⊢ ((Tr 𝐴 ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 11 | 10 | biimpd 229 | . . . . . . . . 9 ⊢ ((Tr 𝐴 ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) → 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 12 | 11 | expcom 413 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → (Tr 𝐴 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) → 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 13 | 12 | a2d 29 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → ((Tr 𝐴 → ∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On)) → (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 14 | 2, 13 | biimtrid 242 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)(Tr 𝐴 → 𝑧 ∈ ∪ (𝑅1 “ On)) → (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 15 | eleq1w 2814 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ ∪ (𝑅1 “ On) ↔ 𝑧 ∈ ∪ (𝑅1 “ On))) | |
| 16 | 15 | imbi2d 340 | . . . . . 6 ⊢ (𝑦 = 𝑧 → ((Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)) ↔ (Tr 𝐴 → 𝑧 ∈ ∪ (𝑅1 “ On)))) |
| 17 | 14, 16 | frins2 9653 | . . . . 5 ⊢ (( E Fr 𝐴 ∧ E Se 𝐴) → ∀𝑦 ∈ 𝐴 (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 18 | 1, 17 | mpan2 691 | . . . 4 ⊢ ( E Fr 𝐴 → ∀𝑦 ∈ 𝐴 (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 19 | r19.21v 3157 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)) ↔ (Tr 𝐴 → ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On))) | |
| 20 | 18, 19 | sylib 218 | . . 3 ⊢ ( E Fr 𝐴 → (Tr 𝐴 → ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 21 | dfss3 3918 | . . 3 ⊢ (𝐴 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On)) | |
| 22 | 20, 21 | imbitrrdi 252 | . 2 ⊢ ( E Fr 𝐴 → (Tr 𝐴 → 𝐴 ⊆ ∪ (𝑅1 “ On))) |
| 23 | 22 | impcom 407 | 1 ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 ∪ cuni 4858 Tr wtr 5200 E cep 5518 Fr wfr 5569 Se wse 5570 “ cima 5622 Predcpred 6253 Oncon0 6312 𝑅1cr1 9661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-ttrcl 9604 df-r1 9663 |
| This theorem is referenced by: tcfr 45061 |
| Copyright terms: Public domain | W3C validator |