| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trfr | Structured version Visualization version GIF version | ||
| Description: A transitive class well-founded by ∈ is a subclass of the class of well-founded sets. Part of Lemma I.9.21 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| trfr | ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epse 5667 | . . . . 5 ⊢ E Se 𝐴 | |
| 2 | r19.21v 3180 | . . . . . . 7 ⊢ (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)(Tr 𝐴 → 𝑧 ∈ ∪ (𝑅1 “ On)) ↔ (Tr 𝐴 → ∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On))) | |
| 3 | trpred 6352 | . . . . . . . . . . 11 ⊢ ((Tr 𝐴 ∧ 𝑦 ∈ 𝐴) → Pred( E , 𝐴, 𝑦) = 𝑦) | |
| 4 | raleq 3323 | . . . . . . . . . . . . 13 ⊢ (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ ∀𝑧 ∈ 𝑦 𝑧 ∈ ∪ (𝑅1 “ On))) | |
| 5 | dfss3 3972 | . . . . . . . . . . . . 13 ⊢ (𝑦 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑧 ∈ 𝑦 𝑧 ∈ ∪ (𝑅1 “ On)) | |
| 6 | 4, 5 | bitr4di 289 | . . . . . . . . . . . 12 ⊢ (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ⊆ ∪ (𝑅1 “ On))) |
| 7 | vex 3484 | . . . . . . . . . . . . 13 ⊢ 𝑦 ∈ V | |
| 8 | 7 | r1elss 9846 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ⊆ ∪ (𝑅1 “ On)) |
| 9 | 6, 8 | bitr4di 289 | . . . . . . . . . . 11 ⊢ (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 10 | 3, 9 | syl 17 | . . . . . . . . . 10 ⊢ ((Tr 𝐴 ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 11 | 10 | biimpd 229 | . . . . . . . . 9 ⊢ ((Tr 𝐴 ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) → 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 12 | 11 | expcom 413 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → (Tr 𝐴 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) → 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 13 | 12 | a2d 29 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → ((Tr 𝐴 → ∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On)) → (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 14 | 2, 13 | biimtrid 242 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)(Tr 𝐴 → 𝑧 ∈ ∪ (𝑅1 “ On)) → (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 15 | eleq1w 2824 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ ∪ (𝑅1 “ On) ↔ 𝑧 ∈ ∪ (𝑅1 “ On))) | |
| 16 | 15 | imbi2d 340 | . . . . . 6 ⊢ (𝑦 = 𝑧 → ((Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)) ↔ (Tr 𝐴 → 𝑧 ∈ ∪ (𝑅1 “ On)))) |
| 17 | 14, 16 | frins2 9794 | . . . . 5 ⊢ (( E Fr 𝐴 ∧ E Se 𝐴) → ∀𝑦 ∈ 𝐴 (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 18 | 1, 17 | mpan2 691 | . . . 4 ⊢ ( E Fr 𝐴 → ∀𝑦 ∈ 𝐴 (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 19 | r19.21v 3180 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)) ↔ (Tr 𝐴 → ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On))) | |
| 20 | 18, 19 | sylib 218 | . . 3 ⊢ ( E Fr 𝐴 → (Tr 𝐴 → ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 21 | dfss3 3972 | . . 3 ⊢ (𝐴 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On)) | |
| 22 | 20, 21 | imbitrrdi 252 | . 2 ⊢ ( E Fr 𝐴 → (Tr 𝐴 → 𝐴 ⊆ ∪ (𝑅1 “ On))) |
| 23 | 22 | impcom 407 | 1 ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 ∪ cuni 4907 Tr wtr 5259 E cep 5583 Fr wfr 5634 Se wse 5635 “ cima 5688 Predcpred 6320 Oncon0 6384 𝑅1cr1 9802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-ttrcl 9748 df-r1 9804 |
| This theorem is referenced by: tcfr 44980 |
| Copyright terms: Public domain | W3C validator |