Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trfr Structured version   Visualization version   GIF version

Theorem trfr 45060
Description: A transitive class well-founded by is a subclass of the class of well-founded sets. Part of Lemma I.9.21 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.)
Assertion
Ref Expression
trfr ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 (𝑅1 “ On))

Proof of Theorem trfr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epse 5601 . . . . 5 E Se 𝐴
2 r19.21v 3157 . . . . . . 7 (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)(Tr 𝐴𝑧 (𝑅1 “ On)) ↔ (Tr 𝐴 → ∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On)))
3 trpred 6284 . . . . . . . . . . 11 ((Tr 𝐴𝑦𝐴) → Pred( E , 𝐴, 𝑦) = 𝑦)
4 raleq 3289 . . . . . . . . . . . . 13 (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) ↔ ∀𝑧𝑦 𝑧 (𝑅1 “ On)))
5 dfss3 3918 . . . . . . . . . . . . 13 (𝑦 (𝑅1 “ On) ↔ ∀𝑧𝑦 𝑧 (𝑅1 “ On))
64, 5bitr4di 289 . . . . . . . . . . . 12 (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) ↔ 𝑦 (𝑅1 “ On)))
7 vex 3440 . . . . . . . . . . . . 13 𝑦 ∈ V
87r1elss 9705 . . . . . . . . . . . 12 (𝑦 (𝑅1 “ On) ↔ 𝑦 (𝑅1 “ On))
96, 8bitr4di 289 . . . . . . . . . . 11 (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) ↔ 𝑦 (𝑅1 “ On)))
103, 9syl 17 . . . . . . . . . 10 ((Tr 𝐴𝑦𝐴) → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) ↔ 𝑦 (𝑅1 “ On)))
1110biimpd 229 . . . . . . . . 9 ((Tr 𝐴𝑦𝐴) → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) → 𝑦 (𝑅1 “ On)))
1211expcom 413 . . . . . . . 8 (𝑦𝐴 → (Tr 𝐴 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On) → 𝑦 (𝑅1 “ On))))
1312a2d 29 . . . . . . 7 (𝑦𝐴 → ((Tr 𝐴 → ∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 (𝑅1 “ On)) → (Tr 𝐴𝑦 (𝑅1 “ On))))
142, 13biimtrid 242 . . . . . 6 (𝑦𝐴 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)(Tr 𝐴𝑧 (𝑅1 “ On)) → (Tr 𝐴𝑦 (𝑅1 “ On))))
15 eleq1w 2814 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 (𝑅1 “ On) ↔ 𝑧 (𝑅1 “ On)))
1615imbi2d 340 . . . . . 6 (𝑦 = 𝑧 → ((Tr 𝐴𝑦 (𝑅1 “ On)) ↔ (Tr 𝐴𝑧 (𝑅1 “ On))))
1714, 16frins2 9653 . . . . 5 (( E Fr 𝐴 ∧ E Se 𝐴) → ∀𝑦𝐴 (Tr 𝐴𝑦 (𝑅1 “ On)))
181, 17mpan2 691 . . . 4 ( E Fr 𝐴 → ∀𝑦𝐴 (Tr 𝐴𝑦 (𝑅1 “ On)))
19 r19.21v 3157 . . . 4 (∀𝑦𝐴 (Tr 𝐴𝑦 (𝑅1 “ On)) ↔ (Tr 𝐴 → ∀𝑦𝐴 𝑦 (𝑅1 “ On)))
2018, 19sylib 218 . . 3 ( E Fr 𝐴 → (Tr 𝐴 → ∀𝑦𝐴 𝑦 (𝑅1 “ On)))
21 dfss3 3918 . . 3 (𝐴 (𝑅1 “ On) ↔ ∀𝑦𝐴 𝑦 (𝑅1 “ On))
2220, 21imbitrrdi 252 . 2 ( E Fr 𝐴 → (Tr 𝐴𝐴 (𝑅1 “ On)))
2322impcom 407 1 ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3897   cuni 4858  Tr wtr 5200   E cep 5518   Fr wfr 5569   Se wse 5570  cima 5622  Predcpred 6253  Oncon0 6312  𝑅1cr1 9661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-ttrcl 9604  df-r1 9663
This theorem is referenced by:  tcfr  45061
  Copyright terms: Public domain W3C validator