| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trfr | Structured version Visualization version GIF version | ||
| Description: A transitive class well-founded by ∈ is a subclass of the class of well-founded sets. Part of Lemma I.9.21 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| trfr | ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epse 5634 | . . . . 5 ⊢ E Se 𝐴 | |
| 2 | r19.21v 3163 | . . . . . . 7 ⊢ (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)(Tr 𝐴 → 𝑧 ∈ ∪ (𝑅1 “ On)) ↔ (Tr 𝐴 → ∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On))) | |
| 3 | trpred 6318 | . . . . . . . . . . 11 ⊢ ((Tr 𝐴 ∧ 𝑦 ∈ 𝐴) → Pred( E , 𝐴, 𝑦) = 𝑦) | |
| 4 | raleq 3300 | . . . . . . . . . . . . 13 ⊢ (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ ∀𝑧 ∈ 𝑦 𝑧 ∈ ∪ (𝑅1 “ On))) | |
| 5 | dfss3 3945 | . . . . . . . . . . . . 13 ⊢ (𝑦 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑧 ∈ 𝑦 𝑧 ∈ ∪ (𝑅1 “ On)) | |
| 6 | 4, 5 | bitr4di 289 | . . . . . . . . . . . 12 ⊢ (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ⊆ ∪ (𝑅1 “ On))) |
| 7 | vex 3461 | . . . . . . . . . . . . 13 ⊢ 𝑦 ∈ V | |
| 8 | 7 | r1elss 9813 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ⊆ ∪ (𝑅1 “ On)) |
| 9 | 6, 8 | bitr4di 289 | . . . . . . . . . . 11 ⊢ (Pred( E , 𝐴, 𝑦) = 𝑦 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 10 | 3, 9 | syl 17 | . . . . . . . . . 10 ⊢ ((Tr 𝐴 ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 11 | 10 | biimpd 229 | . . . . . . . . 9 ⊢ ((Tr 𝐴 ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) → 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 12 | 11 | expcom 413 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → (Tr 𝐴 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On) → 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 13 | 12 | a2d 29 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → ((Tr 𝐴 → ∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)𝑧 ∈ ∪ (𝑅1 “ On)) → (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 14 | 2, 13 | biimtrid 242 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred ( E , 𝐴, 𝑦)(Tr 𝐴 → 𝑧 ∈ ∪ (𝑅1 “ On)) → (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)))) |
| 15 | eleq1w 2816 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ ∪ (𝑅1 “ On) ↔ 𝑧 ∈ ∪ (𝑅1 “ On))) | |
| 16 | 15 | imbi2d 340 | . . . . . 6 ⊢ (𝑦 = 𝑧 → ((Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)) ↔ (Tr 𝐴 → 𝑧 ∈ ∪ (𝑅1 “ On)))) |
| 17 | 14, 16 | frins2 9761 | . . . . 5 ⊢ (( E Fr 𝐴 ∧ E Se 𝐴) → ∀𝑦 ∈ 𝐴 (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 18 | 1, 17 | mpan2 691 | . . . 4 ⊢ ( E Fr 𝐴 → ∀𝑦 ∈ 𝐴 (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 19 | r19.21v 3163 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (Tr 𝐴 → 𝑦 ∈ ∪ (𝑅1 “ On)) ↔ (Tr 𝐴 → ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On))) | |
| 20 | 18, 19 | sylib 218 | . . 3 ⊢ ( E Fr 𝐴 → (Tr 𝐴 → ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On))) |
| 21 | dfss3 3945 | . . 3 ⊢ (𝐴 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On)) | |
| 22 | 20, 21 | imbitrrdi 252 | . 2 ⊢ ( E Fr 𝐴 → (Tr 𝐴 → 𝐴 ⊆ ∪ (𝑅1 “ On))) |
| 23 | 22 | impcom 407 | 1 ⊢ ((Tr 𝐴 ∧ E Fr 𝐴) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3924 ∪ cuni 4881 Tr wtr 5227 E cep 5550 Fr wfr 5601 Se wse 5602 “ cima 5655 Predcpred 6287 Oncon0 6350 𝑅1cr1 9769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-inf2 9648 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-se 5605 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-oadd 8479 df-ttrcl 9715 df-r1 9771 |
| This theorem is referenced by: tcfr 44922 |
| Copyright terms: Public domain | W3C validator |