| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tcfr | Structured version Visualization version GIF version | ||
| Description: A set is well-founded if and only if its transitive closure is well-founded by ∈. This characterization of well-founded sets is that in Definition I.9.20 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| tcfr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tcfr | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ E Fr (TC‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcwf 9923 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (TC‘𝐴) ∈ ∪ (𝑅1 “ On)) | |
| 2 | r1elssi 9845 | . . 3 ⊢ ((TC‘𝐴) ∈ ∪ (𝑅1 “ On) → (TC‘𝐴) ⊆ ∪ (𝑅1 “ On)) | |
| 3 | wffr 44978 | . . . 4 ⊢ E Fr ∪ (𝑅1 “ On) | |
| 4 | frss 5649 | . . . 4 ⊢ ((TC‘𝐴) ⊆ ∪ (𝑅1 “ On) → ( E Fr ∪ (𝑅1 “ On) → E Fr (TC‘𝐴))) | |
| 5 | 3, 4 | mpi 20 | . . 3 ⊢ ((TC‘𝐴) ⊆ ∪ (𝑅1 “ On) → E Fr (TC‘𝐴)) |
| 6 | 1, 2, 5 | 3syl 18 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → E Fr (TC‘𝐴)) |
| 7 | tcfr.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 8 | tcid 9779 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ⊆ (TC‘𝐴)) | |
| 9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ 𝐴 ⊆ (TC‘𝐴) |
| 10 | tctr 9780 | . . . . 5 ⊢ Tr (TC‘𝐴) | |
| 11 | trfr 44979 | . . . . 5 ⊢ ((Tr (TC‘𝐴) ∧ E Fr (TC‘𝐴)) → (TC‘𝐴) ⊆ ∪ (𝑅1 “ On)) | |
| 12 | 10, 11 | mpan 690 | . . . 4 ⊢ ( E Fr (TC‘𝐴) → (TC‘𝐴) ⊆ ∪ (𝑅1 “ On)) |
| 13 | 9, 12 | sstrid 3995 | . . 3 ⊢ ( E Fr (TC‘𝐴) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| 14 | 7 | r1elss 9846 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| 15 | 13, 14 | sylibr 234 | . 2 ⊢ ( E Fr (TC‘𝐴) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
| 16 | 6, 15 | impbii 209 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ E Fr (TC‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 Vcvv 3480 ⊆ wss 3951 ∪ cuni 4907 Tr wtr 5259 E cep 5583 Fr wfr 5634 “ cima 5688 Oncon0 6384 ‘cfv 6561 TCctc 9776 𝑅1cr1 9802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-ttrcl 9748 df-tc 9777 df-r1 9804 df-rank 9805 df-relp 44964 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |