Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tcfr Structured version   Visualization version   GIF version

Theorem tcfr 44937
Description: A set is well-founded if and only if its transitive closure is well-founded by . This characterization of well-founded sets is that in Definition I.9.20 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.)
Hypothesis
Ref Expression
tcfr.1 𝐴 ∈ V
Assertion
Ref Expression
tcfr (𝐴 (𝑅1 “ On) ↔ E Fr (TC‘𝐴))

Proof of Theorem tcfr
StepHypRef Expression
1 tcwf 9798 . . 3 (𝐴 (𝑅1 “ On) → (TC‘𝐴) ∈ (𝑅1 “ On))
2 r1elssi 9720 . . 3 ((TC‘𝐴) ∈ (𝑅1 “ On) → (TC‘𝐴) ⊆ (𝑅1 “ On))
3 wffr 44935 . . . 4 E Fr (𝑅1 “ On)
4 frss 5587 . . . 4 ((TC‘𝐴) ⊆ (𝑅1 “ On) → ( E Fr (𝑅1 “ On) → E Fr (TC‘𝐴)))
53, 4mpi 20 . . 3 ((TC‘𝐴) ⊆ (𝑅1 “ On) → E Fr (TC‘𝐴))
61, 2, 53syl 18 . 2 (𝐴 (𝑅1 “ On) → E Fr (TC‘𝐴))
7 tcfr.1 . . . . 5 𝐴 ∈ V
8 tcid 9654 . . . . 5 (𝐴 ∈ V → 𝐴 ⊆ (TC‘𝐴))
97, 8ax-mp 5 . . . 4 𝐴 ⊆ (TC‘𝐴)
10 tctr 9655 . . . . 5 Tr (TC‘𝐴)
11 trfr 44936 . . . . 5 ((Tr (TC‘𝐴) ∧ E Fr (TC‘𝐴)) → (TC‘𝐴) ⊆ (𝑅1 “ On))
1210, 11mpan 690 . . . 4 ( E Fr (TC‘𝐴) → (TC‘𝐴) ⊆ (𝑅1 “ On))
139, 12sstrid 3949 . . 3 ( E Fr (TC‘𝐴) → 𝐴 (𝑅1 “ On))
147r1elss 9721 . . 3 (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))
1513, 14sylibr 234 . 2 ( E Fr (TC‘𝐴) → 𝐴 (𝑅1 “ On))
166, 15impbii 209 1 (𝐴 (𝑅1 “ On) ↔ E Fr (TC‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Vcvv 3438  wss 3905   cuni 4861  Tr wtr 5202   E cep 5522   Fr wfr 5573  cima 5626  Oncon0 6311  cfv 6486  TCctc 9651  𝑅1cr1 9677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-ttrcl 9623  df-tc 9652  df-r1 9679  df-rank 9680  df-relp 44917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator