Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tcfr Structured version   Visualization version   GIF version

Theorem tcfr 44995
Description: A set is well-founded if and only if its transitive closure is well-founded by . This characterization of well-founded sets is that in Definition I.9.20 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.)
Hypothesis
Ref Expression
tcfr.1 𝐴 ∈ V
Assertion
Ref Expression
tcfr (𝐴 (𝑅1 “ On) ↔ E Fr (TC‘𝐴))

Proof of Theorem tcfr
StepHypRef Expression
1 tcwf 9773 . . 3 (𝐴 (𝑅1 “ On) → (TC‘𝐴) ∈ (𝑅1 “ On))
2 r1elssi 9695 . . 3 ((TC‘𝐴) ∈ (𝑅1 “ On) → (TC‘𝐴) ⊆ (𝑅1 “ On))
3 wffr 44993 . . . 4 E Fr (𝑅1 “ On)
4 frss 5580 . . . 4 ((TC‘𝐴) ⊆ (𝑅1 “ On) → ( E Fr (𝑅1 “ On) → E Fr (TC‘𝐴)))
53, 4mpi 20 . . 3 ((TC‘𝐴) ⊆ (𝑅1 “ On) → E Fr (TC‘𝐴))
61, 2, 53syl 18 . 2 (𝐴 (𝑅1 “ On) → E Fr (TC‘𝐴))
7 tcfr.1 . . . . 5 𝐴 ∈ V
8 tcid 9629 . . . . 5 (𝐴 ∈ V → 𝐴 ⊆ (TC‘𝐴))
97, 8ax-mp 5 . . . 4 𝐴 ⊆ (TC‘𝐴)
10 tctr 9630 . . . . 5 Tr (TC‘𝐴)
11 trfr 44994 . . . . 5 ((Tr (TC‘𝐴) ∧ E Fr (TC‘𝐴)) → (TC‘𝐴) ⊆ (𝑅1 “ On))
1210, 11mpan 690 . . . 4 ( E Fr (TC‘𝐴) → (TC‘𝐴) ⊆ (𝑅1 “ On))
139, 12sstrid 3946 . . 3 ( E Fr (TC‘𝐴) → 𝐴 (𝑅1 “ On))
147r1elss 9696 . . 3 (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))
1513, 14sylibr 234 . 2 ( E Fr (TC‘𝐴) → 𝐴 (𝑅1 “ On))
166, 15impbii 209 1 (𝐴 (𝑅1 “ On) ↔ E Fr (TC‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111  Vcvv 3436  wss 3902   cuni 4859  Tr wtr 5198   E cep 5515   Fr wfr 5566  cima 5619  Oncon0 6306  cfv 6481  TCctc 9626  𝑅1cr1 9652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-ttrcl 9598  df-tc 9627  df-r1 9654  df-rank 9655  df-relp 44975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator