| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tcfr | Structured version Visualization version GIF version | ||
| Description: A set is well-founded if and only if its transitive closure is well-founded by ∈. This characterization of well-founded sets is that in Definition I.9.20 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| tcfr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tcfr | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ E Fr (TC‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcwf 9890 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (TC‘𝐴) ∈ ∪ (𝑅1 “ On)) | |
| 2 | r1elssi 9812 | . . 3 ⊢ ((TC‘𝐴) ∈ ∪ (𝑅1 “ On) → (TC‘𝐴) ⊆ ∪ (𝑅1 “ On)) | |
| 3 | wffr 44920 | . . . 4 ⊢ E Fr ∪ (𝑅1 “ On) | |
| 4 | frss 5616 | . . . 4 ⊢ ((TC‘𝐴) ⊆ ∪ (𝑅1 “ On) → ( E Fr ∪ (𝑅1 “ On) → E Fr (TC‘𝐴))) | |
| 5 | 3, 4 | mpi 20 | . . 3 ⊢ ((TC‘𝐴) ⊆ ∪ (𝑅1 “ On) → E Fr (TC‘𝐴)) |
| 6 | 1, 2, 5 | 3syl 18 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → E Fr (TC‘𝐴)) |
| 7 | tcfr.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 8 | tcid 9746 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ⊆ (TC‘𝐴)) | |
| 9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ 𝐴 ⊆ (TC‘𝐴) |
| 10 | tctr 9747 | . . . . 5 ⊢ Tr (TC‘𝐴) | |
| 11 | trfr 44921 | . . . . 5 ⊢ ((Tr (TC‘𝐴) ∧ E Fr (TC‘𝐴)) → (TC‘𝐴) ⊆ ∪ (𝑅1 “ On)) | |
| 12 | 10, 11 | mpan 690 | . . . 4 ⊢ ( E Fr (TC‘𝐴) → (TC‘𝐴) ⊆ ∪ (𝑅1 “ On)) |
| 13 | 9, 12 | sstrid 3968 | . . 3 ⊢ ( E Fr (TC‘𝐴) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| 14 | 7 | r1elss 9813 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| 15 | 13, 14 | sylibr 234 | . 2 ⊢ ( E Fr (TC‘𝐴) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
| 16 | 6, 15 | impbii 209 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ E Fr (TC‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2107 Vcvv 3457 ⊆ wss 3924 ∪ cuni 4881 Tr wtr 5227 E cep 5550 Fr wfr 5601 “ cima 5655 Oncon0 6350 ‘cfv 6528 TCctc 9743 𝑅1cr1 9769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-inf2 9648 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-iin 4968 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-se 5605 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-oadd 8479 df-ttrcl 9715 df-tc 9744 df-r1 9771 df-rank 9772 df-relp 44902 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |