Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tcfr Structured version   Visualization version   GIF version

Theorem tcfr 44960
Description: A set is well-founded if and only if its transitive closure is well-founded by . This characterization of well-founded sets is that in Definition I.9.20 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.)
Hypothesis
Ref Expression
tcfr.1 𝐴 ∈ V
Assertion
Ref Expression
tcfr (𝐴 (𝑅1 “ On) ↔ E Fr (TC‘𝐴))

Proof of Theorem tcfr
StepHypRef Expression
1 tcwf 9843 . . 3 (𝐴 (𝑅1 “ On) → (TC‘𝐴) ∈ (𝑅1 “ On))
2 r1elssi 9765 . . 3 ((TC‘𝐴) ∈ (𝑅1 “ On) → (TC‘𝐴) ⊆ (𝑅1 “ On))
3 wffr 44958 . . . 4 E Fr (𝑅1 “ On)
4 frss 5605 . . . 4 ((TC‘𝐴) ⊆ (𝑅1 “ On) → ( E Fr (𝑅1 “ On) → E Fr (TC‘𝐴)))
53, 4mpi 20 . . 3 ((TC‘𝐴) ⊆ (𝑅1 “ On) → E Fr (TC‘𝐴))
61, 2, 53syl 18 . 2 (𝐴 (𝑅1 “ On) → E Fr (TC‘𝐴))
7 tcfr.1 . . . . 5 𝐴 ∈ V
8 tcid 9699 . . . . 5 (𝐴 ∈ V → 𝐴 ⊆ (TC‘𝐴))
97, 8ax-mp 5 . . . 4 𝐴 ⊆ (TC‘𝐴)
10 tctr 9700 . . . . 5 Tr (TC‘𝐴)
11 trfr 44959 . . . . 5 ((Tr (TC‘𝐴) ∧ E Fr (TC‘𝐴)) → (TC‘𝐴) ⊆ (𝑅1 “ On))
1210, 11mpan 690 . . . 4 ( E Fr (TC‘𝐴) → (TC‘𝐴) ⊆ (𝑅1 “ On))
139, 12sstrid 3961 . . 3 ( E Fr (TC‘𝐴) → 𝐴 (𝑅1 “ On))
147r1elss 9766 . . 3 (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))
1513, 14sylibr 234 . 2 ( E Fr (TC‘𝐴) → 𝐴 (𝑅1 “ On))
166, 15impbii 209 1 (𝐴 (𝑅1 “ On) ↔ E Fr (TC‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Vcvv 3450  wss 3917   cuni 4874  Tr wtr 5217   E cep 5540   Fr wfr 5591  cima 5644  Oncon0 6335  cfv 6514  TCctc 9696  𝑅1cr1 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-ttrcl 9668  df-tc 9697  df-r1 9724  df-rank 9725  df-relp 44940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator