Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tcfr Structured version   Visualization version   GIF version

Theorem tcfr 44936
Description: A set is well-founded if and only if its transitive closure is well-founded by . This characterization of well-founded sets is that in Definition I.9.20 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.)
Hypothesis
Ref Expression
tcfr.1 𝐴 ∈ V
Assertion
Ref Expression
tcfr (𝐴 (𝑅1 “ On) ↔ E Fr (TC‘𝐴))

Proof of Theorem tcfr
StepHypRef Expression
1 tcwf 9895 . . 3 (𝐴 (𝑅1 “ On) → (TC‘𝐴) ∈ (𝑅1 “ On))
2 r1elssi 9817 . . 3 ((TC‘𝐴) ∈ (𝑅1 “ On) → (TC‘𝐴) ⊆ (𝑅1 “ On))
3 wffr 44934 . . . 4 E Fr (𝑅1 “ On)
4 frss 5618 . . . 4 ((TC‘𝐴) ⊆ (𝑅1 “ On) → ( E Fr (𝑅1 “ On) → E Fr (TC‘𝐴)))
53, 4mpi 20 . . 3 ((TC‘𝐴) ⊆ (𝑅1 “ On) → E Fr (TC‘𝐴))
61, 2, 53syl 18 . 2 (𝐴 (𝑅1 “ On) → E Fr (TC‘𝐴))
7 tcfr.1 . . . . 5 𝐴 ∈ V
8 tcid 9751 . . . . 5 (𝐴 ∈ V → 𝐴 ⊆ (TC‘𝐴))
97, 8ax-mp 5 . . . 4 𝐴 ⊆ (TC‘𝐴)
10 tctr 9752 . . . . 5 Tr (TC‘𝐴)
11 trfr 44935 . . . . 5 ((Tr (TC‘𝐴) ∧ E Fr (TC‘𝐴)) → (TC‘𝐴) ⊆ (𝑅1 “ On))
1210, 11mpan 690 . . . 4 ( E Fr (TC‘𝐴) → (TC‘𝐴) ⊆ (𝑅1 “ On))
139, 12sstrid 3970 . . 3 ( E Fr (TC‘𝐴) → 𝐴 (𝑅1 “ On))
147r1elss 9818 . . 3 (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))
1513, 14sylibr 234 . 2 ( E Fr (TC‘𝐴) → 𝐴 (𝑅1 “ On))
166, 15impbii 209 1 (𝐴 (𝑅1 “ On) ↔ E Fr (TC‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  Vcvv 3459  wss 3926   cuni 4883  Tr wtr 5229   E cep 5552   Fr wfr 5603  cima 5657  Oncon0 6352  cfv 6530  TCctc 9748  𝑅1cr1 9774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-oadd 8482  df-ttrcl 9720  df-tc 9749  df-r1 9776  df-rank 9777  df-relp 44916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator