| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tcfr | Structured version Visualization version GIF version | ||
| Description: A set is well-founded if and only if its transitive closure is well-founded by ∈. This characterization of well-founded sets is that in Definition I.9.20 of [Kunen2] p. 53. (Contributed by Eric Schmidt, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| tcfr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tcfr | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ E Fr (TC‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcwf 9783 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (TC‘𝐴) ∈ ∪ (𝑅1 “ On)) | |
| 2 | r1elssi 9705 | . . 3 ⊢ ((TC‘𝐴) ∈ ∪ (𝑅1 “ On) → (TC‘𝐴) ⊆ ∪ (𝑅1 “ On)) | |
| 3 | wffr 45078 | . . . 4 ⊢ E Fr ∪ (𝑅1 “ On) | |
| 4 | frss 5583 | . . . 4 ⊢ ((TC‘𝐴) ⊆ ∪ (𝑅1 “ On) → ( E Fr ∪ (𝑅1 “ On) → E Fr (TC‘𝐴))) | |
| 5 | 3, 4 | mpi 20 | . . 3 ⊢ ((TC‘𝐴) ⊆ ∪ (𝑅1 “ On) → E Fr (TC‘𝐴)) |
| 6 | 1, 2, 5 | 3syl 18 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → E Fr (TC‘𝐴)) |
| 7 | tcfr.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 8 | tcid 9634 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ⊆ (TC‘𝐴)) | |
| 9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ 𝐴 ⊆ (TC‘𝐴) |
| 10 | tctr 9635 | . . . . 5 ⊢ Tr (TC‘𝐴) | |
| 11 | trfr 45079 | . . . . 5 ⊢ ((Tr (TC‘𝐴) ∧ E Fr (TC‘𝐴)) → (TC‘𝐴) ⊆ ∪ (𝑅1 “ On)) | |
| 12 | 10, 11 | mpan 690 | . . . 4 ⊢ ( E Fr (TC‘𝐴) → (TC‘𝐴) ⊆ ∪ (𝑅1 “ On)) |
| 13 | 9, 12 | sstrid 3942 | . . 3 ⊢ ( E Fr (TC‘𝐴) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| 14 | 7 | r1elss 9706 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| 15 | 13, 14 | sylibr 234 | . 2 ⊢ ( E Fr (TC‘𝐴) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
| 16 | 6, 15 | impbii 209 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ E Fr (TC‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ∪ cuni 4858 Tr wtr 5200 E cep 5518 Fr wfr 5569 “ cima 5622 Oncon0 6311 ‘cfv 6486 TCctc 9631 𝑅1cr1 9662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-ttrcl 9605 df-tc 9632 df-r1 9664 df-rank 9665 df-relp 45060 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |