Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xleadd2d | Structured version Visualization version GIF version |
Description: Addition of extended reals preserves the "less than or equal to" relation, in the right slot. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
xleadd2d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xleadd2d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xleadd2d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
xleadd2d.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
xleadd2d | ⊢ (𝜑 → (𝐶 +𝑒 𝐴) ≤ (𝐶 +𝑒 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xleadd2d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xleadd2d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | xleadd2d.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
4 | xleadd2d.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
5 | xleadd2a 13090 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐶 +𝑒 𝐴) ≤ (𝐶 +𝑒 𝐵)) | |
6 | 1, 2, 3, 4, 5 | syl31anc 1372 | 1 ⊢ (𝜑 → (𝐶 +𝑒 𝐴) ≤ (𝐶 +𝑒 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 class class class wbr 5093 (class class class)co 7338 ℝ*cxr 11110 ≤ cle 11112 +𝑒 cxad 12948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-po 5533 df-so 5534 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-ov 7341 df-oprab 7342 df-mpo 7343 df-1st 7900 df-2nd 7901 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-xadd 12951 |
This theorem is referenced by: xle2addd 43262 meaunle 44391 |
Copyright terms: Public domain | W3C validator |