MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdmet Structured version   Visualization version   GIF version

Theorem stdbdmet 24455
Description: The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
Assertion
Ref Expression
stdbdmet ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)

Proof of Theorem stdbdmet
StepHypRef Expression
1 rpxr 13018 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 rpgt0 13021 . . . 4 (𝑅 ∈ ℝ+ → 0 < 𝑅)
31, 2jca 511 . . 3 (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ* ∧ 0 < 𝑅))
4 stdbdmet.1 . . . . 5 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
54stdbdxmet 24454 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
653expb 1120 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
73, 6sylan2 593 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
8 xmetcl 24270 . . . . . . . 8 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐶𝑦) ∈ ℝ*)
983expb 1120 . . . . . . 7 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ∈ ℝ*)
109adantlr 715 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ∈ ℝ*)
111ad2antlr 727 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ*)
1210, 11ifcld 4547 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ*)
13 rpre 13017 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
1413ad2antlr 727 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ)
15 xmetge0 24283 . . . . . . . 8 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐶𝑦))
16153expb 1120 . . . . . . 7 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐶𝑦))
1716adantlr 715 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐶𝑦))
18 rpge0 13022 . . . . . . 7 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
1918ad2antlr 727 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ 𝑅)
20 breq2 5123 . . . . . . 7 ((𝑥𝐶𝑦) = if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) → (0 ≤ (𝑥𝐶𝑦) ↔ 0 ≤ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)))
21 breq2 5123 . . . . . . 7 (𝑅 = if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) → (0 ≤ 𝑅 ↔ 0 ≤ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)))
2220, 21ifboth 4540 . . . . . 6 ((0 ≤ (𝑥𝐶𝑦) ∧ 0 ≤ 𝑅) → 0 ≤ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
2317, 19, 22syl2anc 584 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
24 xrmin2 13194 . . . . . 6 (((𝑥𝐶𝑦) ∈ ℝ*𝑅 ∈ ℝ*) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ≤ 𝑅)
2510, 11, 24syl2anc 584 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ≤ 𝑅)
26 xrrege0 13190 . . . . 5 (((if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ*𝑅 ∈ ℝ) ∧ (0 ≤ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∧ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ≤ 𝑅)) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ)
2712, 14, 23, 25, 26syl22anc 838 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ)
2827ralrimivva 3187 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → ∀𝑥𝑋𝑦𝑋 if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ)
294fmpo 8067 . . 3 (∀𝑥𝑋𝑦𝑋 if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ)
3028, 29sylib 218 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
31 ismet2 24272 . 2 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))
327, 30, 31sylanbrc 583 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  ifcif 4500   class class class wbr 5119   × cxp 5652  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  cr 11128  0cc0 11129  *cxr 11268   < clt 11269  cle 11270  +crp 13008  ∞Metcxmet 21300  Metcmet 21301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-2 12303  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-icc 13369  df-xmet 21308  df-met 21309
This theorem is referenced by:  mopnex  24458  xlebnum  24915
  Copyright terms: Public domain W3C validator