MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdmet Structured version   Visualization version   GIF version

Theorem stdbdmet 23872
Description: The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
Assertion
Ref Expression
stdbdmet ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)

Proof of Theorem stdbdmet
StepHypRef Expression
1 rpxr 12924 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 rpgt0 12927 . . . 4 (𝑅 ∈ ℝ+ → 0 < 𝑅)
31, 2jca 512 . . 3 (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ* ∧ 0 < 𝑅))
4 stdbdmet.1 . . . . 5 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
54stdbdxmet 23871 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
653expb 1120 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
73, 6sylan2 593 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
8 xmetcl 23684 . . . . . . . 8 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐶𝑦) ∈ ℝ*)
983expb 1120 . . . . . . 7 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ∈ ℝ*)
109adantlr 713 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ∈ ℝ*)
111ad2antlr 725 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ*)
1210, 11ifcld 4532 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ*)
13 rpre 12923 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
1413ad2antlr 725 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ)
15 xmetge0 23697 . . . . . . . 8 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐶𝑦))
16153expb 1120 . . . . . . 7 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐶𝑦))
1716adantlr 713 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐶𝑦))
18 rpge0 12928 . . . . . . 7 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
1918ad2antlr 725 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ 𝑅)
20 breq2 5109 . . . . . . 7 ((𝑥𝐶𝑦) = if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) → (0 ≤ (𝑥𝐶𝑦) ↔ 0 ≤ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)))
21 breq2 5109 . . . . . . 7 (𝑅 = if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) → (0 ≤ 𝑅 ↔ 0 ≤ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)))
2220, 21ifboth 4525 . . . . . 6 ((0 ≤ (𝑥𝐶𝑦) ∧ 0 ≤ 𝑅) → 0 ≤ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
2317, 19, 22syl2anc 584 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
24 xrmin2 13097 . . . . . 6 (((𝑥𝐶𝑦) ∈ ℝ*𝑅 ∈ ℝ*) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ≤ 𝑅)
2510, 11, 24syl2anc 584 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ≤ 𝑅)
26 xrrege0 13093 . . . . 5 (((if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ*𝑅 ∈ ℝ) ∧ (0 ≤ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∧ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ≤ 𝑅)) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ)
2712, 14, 23, 25, 26syl22anc 837 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ)
2827ralrimivva 3197 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → ∀𝑥𝑋𝑦𝑋 if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ)
294fmpo 8000 . . 3 (∀𝑥𝑋𝑦𝑋 if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ)
3028, 29sylib 217 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
31 ismet2 23686 . 2 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))
327, 30, 31sylanbrc 583 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  ifcif 4486   class class class wbr 5105   × cxp 5631  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  cr 11050  0cc0 11051  *cxr 11188   < clt 11189  cle 11190  +crp 12915  ∞Metcxmet 20781  Metcmet 20782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-2 12216  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-xmet 20789  df-met 20790
This theorem is referenced by:  mopnex  23875  xlebnum  24328
  Copyright terms: Public domain W3C validator