MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdmet Structured version   Visualization version   GIF version

Theorem stdbdmet 22649
Description: The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
Assertion
Ref Expression
stdbdmet ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)

Proof of Theorem stdbdmet
StepHypRef Expression
1 rpxr 12085 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 rpgt0 12088 . . . 4 (𝑅 ∈ ℝ+ → 0 < 𝑅)
31, 2jca 508 . . 3 (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ* ∧ 0 < 𝑅))
4 stdbdmet.1 . . . . 5 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
54stdbdxmet 22648 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
653expb 1150 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
73, 6sylan2 587 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
8 xmetcl 22464 . . . . . . . 8 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐶𝑦) ∈ ℝ*)
983expb 1150 . . . . . . 7 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ∈ ℝ*)
109adantlr 707 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ∈ ℝ*)
111ad2antlr 719 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ*)
1210, 11ifcld 4322 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ*)
13 rpre 12082 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
1413ad2antlr 719 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ)
15 xmetge0 22477 . . . . . . . 8 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐶𝑦))
16153expb 1150 . . . . . . 7 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐶𝑦))
1716adantlr 707 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐶𝑦))
18 rpge0 12089 . . . . . . 7 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
1918ad2antlr 719 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ 𝑅)
20 breq2 4847 . . . . . . 7 ((𝑥𝐶𝑦) = if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) → (0 ≤ (𝑥𝐶𝑦) ↔ 0 ≤ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)))
21 breq2 4847 . . . . . . 7 (𝑅 = if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) → (0 ≤ 𝑅 ↔ 0 ≤ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)))
2220, 21ifboth 4315 . . . . . 6 ((0 ≤ (𝑥𝐶𝑦) ∧ 0 ≤ 𝑅) → 0 ≤ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
2317, 19, 22syl2anc 580 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
24 xrmin2 12258 . . . . . 6 (((𝑥𝐶𝑦) ∈ ℝ*𝑅 ∈ ℝ*) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ≤ 𝑅)
2510, 11, 24syl2anc 580 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ≤ 𝑅)
26 xrrege0 12254 . . . . 5 (((if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ*𝑅 ∈ ℝ) ∧ (0 ≤ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∧ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ≤ 𝑅)) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ)
2712, 14, 23, 25, 26syl22anc 868 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ)
2827ralrimivva 3152 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → ∀𝑥𝑋𝑦𝑋 if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ)
294fmpt2 7473 . . 3 (∀𝑥𝑋𝑦𝑋 if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) ∈ ℝ ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ)
3028, 29sylib 210 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
31 ismet2 22466 . 2 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))
327, 30, 31sylanbrc 579 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wral 3089  ifcif 4277   class class class wbr 4843   × cxp 5310  wf 6097  cfv 6101  (class class class)co 6878  cmpt2 6880  cr 10223  0cc0 10224  *cxr 10362   < clt 10363  cle 10364  +crp 12074  ∞Metcxmet 20053  Metcmet 20054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-1st 7401  df-2nd 7402  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-2 11376  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-icc 12431  df-xmet 20061  df-met 20062
This theorem is referenced by:  mopnex  22652  xlebnum  23092
  Copyright terms: Public domain W3C validator