| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metnrmlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for metnrm 24749. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| Ref | Expression |
|---|---|
| metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
| metdscn.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
| metnrmlem.1 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| metnrmlem.2 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) |
| metnrmlem.3 | ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) |
| metnrmlem.4 | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
| Ref | Expression |
|---|---|
| metnrmlem1 | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐴𝐷𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1xr 11174 | . . 3 ⊢ 1 ∈ ℝ* | |
| 2 | metnrmlem.1 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
| 3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 4 | metnrmlem.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) | |
| 5 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑆 ∈ (Clsd‘𝐽)) |
| 6 | eqid 2729 | . . . . . . . . 9 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 7 | 6 | cldss 22914 | . . . . . . . 8 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ ∪ 𝐽) |
| 8 | 5, 7 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑆 ⊆ ∪ 𝐽) |
| 9 | metdscn.j | . . . . . . . . 9 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 10 | 9 | mopnuni 24327 | . . . . . . . 8 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
| 11 | 3, 10 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑋 = ∪ 𝐽) |
| 12 | 8, 11 | sseqtrrd 3973 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑆 ⊆ 𝑋) |
| 13 | metdscn.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
| 14 | 13 | metdsf 24735 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
| 15 | 3, 12, 14 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐹:𝑋⟶(0[,]+∞)) |
| 16 | metnrmlem.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) | |
| 17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑇 ∈ (Clsd‘𝐽)) |
| 18 | 6 | cldss 22914 | . . . . . . . 8 ⊢ (𝑇 ∈ (Clsd‘𝐽) → 𝑇 ⊆ ∪ 𝐽) |
| 19 | 17, 18 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑇 ⊆ ∪ 𝐽) |
| 20 | 19, 11 | sseqtrrd 3973 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑇 ⊆ 𝑋) |
| 21 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐵 ∈ 𝑇) | |
| 22 | 20, 21 | sseldd 3936 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐵 ∈ 𝑋) |
| 23 | 15, 22 | ffvelcdmd 7019 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐵) ∈ (0[,]+∞)) |
| 24 | eliccxr 13338 | . . . 4 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) → (𝐹‘𝐵) ∈ ℝ*) | |
| 25 | 23, 24 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐵) ∈ ℝ*) |
| 26 | ifcl 4522 | . . 3 ⊢ ((1 ∈ ℝ* ∧ (𝐹‘𝐵) ∈ ℝ*) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ∈ ℝ*) | |
| 27 | 1, 25, 26 | sylancr 587 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ∈ ℝ*) |
| 28 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐴 ∈ 𝑆) | |
| 29 | 12, 28 | sseldd 3936 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐴 ∈ 𝑋) |
| 30 | xmetcl 24217 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
| 31 | 3, 29, 22, 30 | syl3anc 1373 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐴𝐷𝐵) ∈ ℝ*) |
| 32 | xrmin2 13080 | . . 3 ⊢ ((1 ∈ ℝ* ∧ (𝐹‘𝐵) ∈ ℝ*) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐹‘𝐵)) | |
| 33 | 1, 25, 32 | sylancr 587 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐹‘𝐵)) |
| 34 | 13 | metdstri 24738 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐹‘𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴))) |
| 35 | 3, 12, 22, 29, 34 | syl22anc 838 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴))) |
| 36 | xmetsym 24233 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵)) | |
| 37 | 3, 22, 29, 36 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵)) |
| 38 | 13 | metds0 24737 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆) → (𝐹‘𝐴) = 0) |
| 39 | 3, 12, 28, 38 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐴) = 0) |
| 40 | 37, 39 | oveq12d 7367 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴)) = ((𝐴𝐷𝐵) +𝑒 0)) |
| 41 | 31 | xaddridd 13145 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵)) |
| 42 | 40, 41 | eqtrd 2764 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴)) = (𝐴𝐷𝐵)) |
| 43 | 35, 42 | breqtrd 5118 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐵) ≤ (𝐴𝐷𝐵)) |
| 44 | 27, 25, 31, 33, 43 | xrletrd 13064 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐴𝐷𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 ifcif 4476 ∪ cuni 4858 class class class wbr 5092 ↦ cmpt 5173 ran crn 5620 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 infcinf 9331 0cc0 11009 1c1 11010 +∞cpnf 11146 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 +𝑒 cxad 13012 [,]cicc 13251 ∞Metcxmet 21246 MetOpencmopn 21251 Clsdccld 22901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-ec 8627 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-icc 13255 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-bl 21256 df-mopn 21257 df-top 22779 df-topon 22796 df-bases 22831 df-cld 22904 |
| This theorem is referenced by: metnrmlem3 24748 |
| Copyright terms: Public domain | W3C validator |