MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem1 Structured version   Visualization version   GIF version

Theorem metnrmlem1 24900
Description: Lemma for metnrm 24903. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
Assertion
Ref Expression
metnrmlem1 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ≤ (𝐴𝐷𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝐵,𝑦   𝑥,𝑇,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metnrmlem1
StepHypRef Expression
1 1xr 11349 . . 3 1 ∈ ℝ*
2 metnrmlem.1 . . . . . . 7 (𝜑𝐷 ∈ (∞Met‘𝑋))
32adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐷 ∈ (∞Met‘𝑋))
4 metnrmlem.2 . . . . . . . . 9 (𝜑𝑆 ∈ (Clsd‘𝐽))
54adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑆 ∈ (Clsd‘𝐽))
6 eqid 2740 . . . . . . . . 9 𝐽 = 𝐽
76cldss 23058 . . . . . . . 8 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
85, 7syl 17 . . . . . . 7 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑆 𝐽)
9 metdscn.j . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
109mopnuni 24472 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
113, 10syl 17 . . . . . . 7 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑋 = 𝐽)
128, 11sseqtrrd 4050 . . . . . 6 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑆𝑋)
13 metdscn.f . . . . . . 7 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
1413metdsf 24889 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
153, 12, 14syl2anc 583 . . . . 5 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐹:𝑋⟶(0[,]+∞))
16 metnrmlem.3 . . . . . . . . 9 (𝜑𝑇 ∈ (Clsd‘𝐽))
1716adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑇 ∈ (Clsd‘𝐽))
186cldss 23058 . . . . . . . 8 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
1917, 18syl 17 . . . . . . 7 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑇 𝐽)
2019, 11sseqtrrd 4050 . . . . . 6 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑇𝑋)
21 simprr 772 . . . . . 6 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐵𝑇)
2220, 21sseldd 4009 . . . . 5 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐵𝑋)
2315, 22ffvelcdmd 7119 . . . 4 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐵) ∈ (0[,]+∞))
24 eliccxr 13495 . . . 4 ((𝐹𝐵) ∈ (0[,]+∞) → (𝐹𝐵) ∈ ℝ*)
2523, 24syl 17 . . 3 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐵) ∈ ℝ*)
26 ifcl 4593 . . 3 ((1 ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ*) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ∈ ℝ*)
271, 25, 26sylancr 586 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ∈ ℝ*)
28 simprl 770 . . . 4 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐴𝑆)
2912, 28sseldd 4009 . . 3 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐴𝑋)
30 xmetcl 24362 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
313, 29, 22, 30syl3anc 1371 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐴𝐷𝐵) ∈ ℝ*)
32 xrmin2 13240 . . 3 ((1 ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ*) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ≤ (𝐹𝐵))
331, 25, 32sylancr 586 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ≤ (𝐹𝐵))
3413metdstri 24892 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐵𝑋𝐴𝑋)) → (𝐹𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)))
353, 12, 22, 29, 34syl22anc 838 . . 3 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)))
36 xmetsym 24378 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
373, 22, 29, 36syl3anc 1371 . . . . 5 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
3813metds0 24891 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) = 0)
393, 12, 28, 38syl3anc 1371 . . . . 5 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐴) = 0)
4037, 39oveq12d 7466 . . . 4 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)) = ((𝐴𝐷𝐵) +𝑒 0))
4131xaddridd 13305 . . . 4 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵))
4240, 41eqtrd 2780 . . 3 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)) = (𝐴𝐷𝐵))
4335, 42breqtrd 5192 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐵) ≤ (𝐴𝐷𝐵))
4427, 25, 31, 33, 43xrletrd 13224 1 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ≤ (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cin 3975  wss 3976  c0 4352  ifcif 4548   cuni 4931   class class class wbr 5166  cmpt 5249  ran crn 5701  wf 6569  cfv 6573  (class class class)co 7448  infcinf 9510  0cc0 11184  1c1 11185  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325   +𝑒 cxad 13173  [,]cicc 13410  ∞Metcxmet 21372  MetOpencmopn 21377  Clsdccld 23045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-ec 8765  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-icc 13414  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048
This theorem is referenced by:  metnrmlem3  24902
  Copyright terms: Public domain W3C validator