| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metnrmlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for metnrm 24778. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| Ref | Expression |
|---|---|
| metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
| metdscn.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
| metnrmlem.1 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| metnrmlem.2 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) |
| metnrmlem.3 | ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) |
| metnrmlem.4 | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
| Ref | Expression |
|---|---|
| metnrmlem1 | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐴𝐷𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1xr 11171 | . . 3 ⊢ 1 ∈ ℝ* | |
| 2 | metnrmlem.1 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
| 3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 4 | metnrmlem.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) | |
| 5 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑆 ∈ (Clsd‘𝐽)) |
| 6 | eqid 2731 | . . . . . . . . 9 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 7 | 6 | cldss 22944 | . . . . . . . 8 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ ∪ 𝐽) |
| 8 | 5, 7 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑆 ⊆ ∪ 𝐽) |
| 9 | metdscn.j | . . . . . . . . 9 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 10 | 9 | mopnuni 24356 | . . . . . . . 8 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
| 11 | 3, 10 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑋 = ∪ 𝐽) |
| 12 | 8, 11 | sseqtrrd 3967 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑆 ⊆ 𝑋) |
| 13 | metdscn.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
| 14 | 13 | metdsf 24764 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
| 15 | 3, 12, 14 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐹:𝑋⟶(0[,]+∞)) |
| 16 | metnrmlem.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) | |
| 17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑇 ∈ (Clsd‘𝐽)) |
| 18 | 6 | cldss 22944 | . . . . . . . 8 ⊢ (𝑇 ∈ (Clsd‘𝐽) → 𝑇 ⊆ ∪ 𝐽) |
| 19 | 17, 18 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑇 ⊆ ∪ 𝐽) |
| 20 | 19, 11 | sseqtrrd 3967 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑇 ⊆ 𝑋) |
| 21 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐵 ∈ 𝑇) | |
| 22 | 20, 21 | sseldd 3930 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐵 ∈ 𝑋) |
| 23 | 15, 22 | ffvelcdmd 7018 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐵) ∈ (0[,]+∞)) |
| 24 | eliccxr 13335 | . . . 4 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) → (𝐹‘𝐵) ∈ ℝ*) | |
| 25 | 23, 24 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐵) ∈ ℝ*) |
| 26 | ifcl 4518 | . . 3 ⊢ ((1 ∈ ℝ* ∧ (𝐹‘𝐵) ∈ ℝ*) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ∈ ℝ*) | |
| 27 | 1, 25, 26 | sylancr 587 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ∈ ℝ*) |
| 28 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐴 ∈ 𝑆) | |
| 29 | 12, 28 | sseldd 3930 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐴 ∈ 𝑋) |
| 30 | xmetcl 24246 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
| 31 | 3, 29, 22, 30 | syl3anc 1373 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐴𝐷𝐵) ∈ ℝ*) |
| 32 | xrmin2 13077 | . . 3 ⊢ ((1 ∈ ℝ* ∧ (𝐹‘𝐵) ∈ ℝ*) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐹‘𝐵)) | |
| 33 | 1, 25, 32 | sylancr 587 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐹‘𝐵)) |
| 34 | 13 | metdstri 24767 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐹‘𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴))) |
| 35 | 3, 12, 22, 29, 34 | syl22anc 838 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴))) |
| 36 | xmetsym 24262 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵)) | |
| 37 | 3, 22, 29, 36 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵)) |
| 38 | 13 | metds0 24766 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆) → (𝐹‘𝐴) = 0) |
| 39 | 3, 12, 28, 38 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐴) = 0) |
| 40 | 37, 39 | oveq12d 7364 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴)) = ((𝐴𝐷𝐵) +𝑒 0)) |
| 41 | 31 | xaddridd 13142 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵)) |
| 42 | 40, 41 | eqtrd 2766 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴)) = (𝐴𝐷𝐵)) |
| 43 | 35, 42 | breqtrd 5115 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐵) ≤ (𝐴𝐷𝐵)) |
| 44 | 27, 25, 31, 33, 43 | xrletrd 13061 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐴𝐷𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 ifcif 4472 ∪ cuni 4856 class class class wbr 5089 ↦ cmpt 5170 ran crn 5615 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 infcinf 9325 0cc0 11006 1c1 11007 +∞cpnf 11143 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 +𝑒 cxad 13009 [,]cicc 13248 ∞Metcxmet 21276 MetOpencmopn 21281 Clsdccld 22931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-ec 8624 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-icc 13252 df-topgen 17347 df-psmet 21283 df-xmet 21284 df-bl 21286 df-mopn 21287 df-top 22809 df-topon 22826 df-bases 22861 df-cld 22934 |
| This theorem is referenced by: metnrmlem3 24777 |
| Copyright terms: Public domain | W3C validator |