MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem1 Structured version   Visualization version   GIF version

Theorem metnrmlem1 24804
Description: Lemma for metnrm 24807. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
Assertion
Ref Expression
metnrmlem1 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ≤ (𝐴𝐷𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝐵,𝑦   𝑥,𝑇,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metnrmlem1
StepHypRef Expression
1 1xr 11299 . . 3 1 ∈ ℝ*
2 metnrmlem.1 . . . . . . 7 (𝜑𝐷 ∈ (∞Met‘𝑋))
32adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐷 ∈ (∞Met‘𝑋))
4 metnrmlem.2 . . . . . . . . 9 (𝜑𝑆 ∈ (Clsd‘𝐽))
54adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑆 ∈ (Clsd‘𝐽))
6 eqid 2736 . . . . . . . . 9 𝐽 = 𝐽
76cldss 22972 . . . . . . . 8 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
85, 7syl 17 . . . . . . 7 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑆 𝐽)
9 metdscn.j . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
109mopnuni 24385 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
113, 10syl 17 . . . . . . 7 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑋 = 𝐽)
128, 11sseqtrrd 4001 . . . . . 6 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑆𝑋)
13 metdscn.f . . . . . . 7 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
1413metdsf 24793 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
153, 12, 14syl2anc 584 . . . . 5 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐹:𝑋⟶(0[,]+∞))
16 metnrmlem.3 . . . . . . . . 9 (𝜑𝑇 ∈ (Clsd‘𝐽))
1716adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑇 ∈ (Clsd‘𝐽))
186cldss 22972 . . . . . . . 8 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
1917, 18syl 17 . . . . . . 7 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑇 𝐽)
2019, 11sseqtrrd 4001 . . . . . 6 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑇𝑋)
21 simprr 772 . . . . . 6 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐵𝑇)
2220, 21sseldd 3964 . . . . 5 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐵𝑋)
2315, 22ffvelcdmd 7080 . . . 4 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐵) ∈ (0[,]+∞))
24 eliccxr 13457 . . . 4 ((𝐹𝐵) ∈ (0[,]+∞) → (𝐹𝐵) ∈ ℝ*)
2523, 24syl 17 . . 3 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐵) ∈ ℝ*)
26 ifcl 4551 . . 3 ((1 ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ*) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ∈ ℝ*)
271, 25, 26sylancr 587 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ∈ ℝ*)
28 simprl 770 . . . 4 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐴𝑆)
2912, 28sseldd 3964 . . 3 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐴𝑋)
30 xmetcl 24275 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
313, 29, 22, 30syl3anc 1373 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐴𝐷𝐵) ∈ ℝ*)
32 xrmin2 13199 . . 3 ((1 ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ*) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ≤ (𝐹𝐵))
331, 25, 32sylancr 587 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ≤ (𝐹𝐵))
3413metdstri 24796 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐵𝑋𝐴𝑋)) → (𝐹𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)))
353, 12, 22, 29, 34syl22anc 838 . . 3 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)))
36 xmetsym 24291 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
373, 22, 29, 36syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
3813metds0 24795 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) = 0)
393, 12, 28, 38syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐴) = 0)
4037, 39oveq12d 7428 . . . 4 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)) = ((𝐴𝐷𝐵) +𝑒 0))
4131xaddridd 13264 . . . 4 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵))
4240, 41eqtrd 2771 . . 3 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)) = (𝐴𝐷𝐵))
4335, 42breqtrd 5150 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐵) ≤ (𝐴𝐷𝐵))
4427, 25, 31, 33, 43xrletrd 13183 1 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ≤ (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3930  wss 3931  c0 4313  ifcif 4505   cuni 4888   class class class wbr 5124  cmpt 5206  ran crn 5660  wf 6532  cfv 6536  (class class class)co 7410  infcinf 9458  0cc0 11134  1c1 11135  +∞cpnf 11271  *cxr 11273   < clt 11274  cle 11275   +𝑒 cxad 13131  [,]cicc 13370  ∞Metcxmet 21305  MetOpencmopn 21310  Clsdccld 22959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-ec 8726  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-icc 13374  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-bases 22889  df-cld 22962
This theorem is referenced by:  metnrmlem3  24806
  Copyright terms: Public domain W3C validator