MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem1 Structured version   Visualization version   GIF version

Theorem metnrmlem1 24022
Description: Lemma for metnrm 24025. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
Assertion
Ref Expression
metnrmlem1 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ≤ (𝐴𝐷𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝐵,𝑦   𝑥,𝑇,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metnrmlem1
StepHypRef Expression
1 1xr 11034 . . 3 1 ∈ ℝ*
2 metnrmlem.1 . . . . . . 7 (𝜑𝐷 ∈ (∞Met‘𝑋))
32adantr 481 . . . . . 6 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐷 ∈ (∞Met‘𝑋))
4 metnrmlem.2 . . . . . . . . 9 (𝜑𝑆 ∈ (Clsd‘𝐽))
54adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑆 ∈ (Clsd‘𝐽))
6 eqid 2738 . . . . . . . . 9 𝐽 = 𝐽
76cldss 22180 . . . . . . . 8 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
85, 7syl 17 . . . . . . 7 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑆 𝐽)
9 metdscn.j . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
109mopnuni 23594 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
113, 10syl 17 . . . . . . 7 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑋 = 𝐽)
128, 11sseqtrrd 3962 . . . . . 6 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑆𝑋)
13 metdscn.f . . . . . . 7 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
1413metdsf 24011 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
153, 12, 14syl2anc 584 . . . . 5 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐹:𝑋⟶(0[,]+∞))
16 metnrmlem.3 . . . . . . . . 9 (𝜑𝑇 ∈ (Clsd‘𝐽))
1716adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑇 ∈ (Clsd‘𝐽))
186cldss 22180 . . . . . . . 8 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
1917, 18syl 17 . . . . . . 7 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑇 𝐽)
2019, 11sseqtrrd 3962 . . . . . 6 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑇𝑋)
21 simprr 770 . . . . . 6 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐵𝑇)
2220, 21sseldd 3922 . . . . 5 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐵𝑋)
2315, 22ffvelrnd 6962 . . . 4 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐵) ∈ (0[,]+∞))
24 eliccxr 13167 . . . 4 ((𝐹𝐵) ∈ (0[,]+∞) → (𝐹𝐵) ∈ ℝ*)
2523, 24syl 17 . . 3 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐵) ∈ ℝ*)
26 ifcl 4504 . . 3 ((1 ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ*) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ∈ ℝ*)
271, 25, 26sylancr 587 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ∈ ℝ*)
28 simprl 768 . . . 4 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐴𝑆)
2912, 28sseldd 3922 . . 3 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐴𝑋)
30 xmetcl 23484 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
313, 29, 22, 30syl3anc 1370 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐴𝐷𝐵) ∈ ℝ*)
32 xrmin2 12912 . . 3 ((1 ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ*) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ≤ (𝐹𝐵))
331, 25, 32sylancr 587 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ≤ (𝐹𝐵))
3413metdstri 24014 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐵𝑋𝐴𝑋)) → (𝐹𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)))
353, 12, 22, 29, 34syl22anc 836 . . 3 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)))
36 xmetsym 23500 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
373, 22, 29, 36syl3anc 1370 . . . . 5 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
3813metds0 24013 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) = 0)
393, 12, 28, 38syl3anc 1370 . . . . 5 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐴) = 0)
4037, 39oveq12d 7293 . . . 4 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)) = ((𝐴𝐷𝐵) +𝑒 0))
4131xaddid1d 12977 . . . 4 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵))
4240, 41eqtrd 2778 . . 3 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)) = (𝐴𝐷𝐵))
4335, 42breqtrd 5100 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐵) ≤ (𝐴𝐷𝐵))
4427, 25, 31, 33, 43xrletrd 12896 1 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ≤ (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cin 3886  wss 3887  c0 4256  ifcif 4459   cuni 4839   class class class wbr 5074  cmpt 5157  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  infcinf 9200  0cc0 10871  1c1 10872  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010   +𝑒 cxad 12846  [,]cicc 13082  ∞Metcxmet 20582  MetOpencmopn 20587  Clsdccld 22167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-ec 8500  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-icc 13086  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-cld 22170
This theorem is referenced by:  metnrmlem3  24024
  Copyright terms: Public domain W3C validator