![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metnrmlem1 | Structured version Visualization version GIF version |
Description: Lemma for metnrm 24898. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
metdscn.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
metnrmlem.1 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
metnrmlem.2 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) |
metnrmlem.3 | ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) |
metnrmlem.4 | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
Ref | Expression |
---|---|
metnrmlem1 | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1xr 11318 | . . 3 ⊢ 1 ∈ ℝ* | |
2 | metnrmlem.1 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐷 ∈ (∞Met‘𝑋)) |
4 | metnrmlem.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) | |
5 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑆 ∈ (Clsd‘𝐽)) |
6 | eqid 2735 | . . . . . . . . 9 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
7 | 6 | cldss 23053 | . . . . . . . 8 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ ∪ 𝐽) |
8 | 5, 7 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑆 ⊆ ∪ 𝐽) |
9 | metdscn.j | . . . . . . . . 9 ⊢ 𝐽 = (MetOpen‘𝐷) | |
10 | 9 | mopnuni 24467 | . . . . . . . 8 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
11 | 3, 10 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑋 = ∪ 𝐽) |
12 | 8, 11 | sseqtrrd 4037 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑆 ⊆ 𝑋) |
13 | metdscn.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
14 | 13 | metdsf 24884 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
15 | 3, 12, 14 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐹:𝑋⟶(0[,]+∞)) |
16 | metnrmlem.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) | |
17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑇 ∈ (Clsd‘𝐽)) |
18 | 6 | cldss 23053 | . . . . . . . 8 ⊢ (𝑇 ∈ (Clsd‘𝐽) → 𝑇 ⊆ ∪ 𝐽) |
19 | 17, 18 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑇 ⊆ ∪ 𝐽) |
20 | 19, 11 | sseqtrrd 4037 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑇 ⊆ 𝑋) |
21 | simprr 773 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐵 ∈ 𝑇) | |
22 | 20, 21 | sseldd 3996 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐵 ∈ 𝑋) |
23 | 15, 22 | ffvelcdmd 7105 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐵) ∈ (0[,]+∞)) |
24 | eliccxr 13472 | . . . 4 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) → (𝐹‘𝐵) ∈ ℝ*) | |
25 | 23, 24 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐵) ∈ ℝ*) |
26 | ifcl 4576 | . . 3 ⊢ ((1 ∈ ℝ* ∧ (𝐹‘𝐵) ∈ ℝ*) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ∈ ℝ*) | |
27 | 1, 25, 26 | sylancr 587 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ∈ ℝ*) |
28 | simprl 771 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐴 ∈ 𝑆) | |
29 | 12, 28 | sseldd 3996 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐴 ∈ 𝑋) |
30 | xmetcl 24357 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
31 | 3, 29, 22, 30 | syl3anc 1370 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐴𝐷𝐵) ∈ ℝ*) |
32 | xrmin2 13217 | . . 3 ⊢ ((1 ∈ ℝ* ∧ (𝐹‘𝐵) ∈ ℝ*) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐹‘𝐵)) | |
33 | 1, 25, 32 | sylancr 587 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐹‘𝐵)) |
34 | 13 | metdstri 24887 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐹‘𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴))) |
35 | 3, 12, 22, 29, 34 | syl22anc 839 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴))) |
36 | xmetsym 24373 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵)) | |
37 | 3, 22, 29, 36 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵)) |
38 | 13 | metds0 24886 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆) → (𝐹‘𝐴) = 0) |
39 | 3, 12, 28, 38 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐴) = 0) |
40 | 37, 39 | oveq12d 7449 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴)) = ((𝐴𝐷𝐵) +𝑒 0)) |
41 | 31 | xaddridd 13282 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵)) |
42 | 40, 41 | eqtrd 2775 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴)) = (𝐴𝐷𝐵)) |
43 | 35, 42 | breqtrd 5174 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐵) ≤ (𝐴𝐷𝐵)) |
44 | 27, 25, 31, 33, 43 | xrletrd 13201 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 ifcif 4531 ∪ cuni 4912 class class class wbr 5148 ↦ cmpt 5231 ran crn 5690 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 infcinf 9479 0cc0 11153 1c1 11154 +∞cpnf 11290 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 +𝑒 cxad 13150 [,]cicc 13387 ∞Metcxmet 21367 MetOpencmopn 21372 Clsdccld 23040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-ec 8746 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-icc 13391 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-bl 21377 df-mopn 21378 df-top 22916 df-topon 22933 df-bases 22969 df-cld 23043 |
This theorem is referenced by: metnrmlem3 24897 |
Copyright terms: Public domain | W3C validator |