MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem1 Structured version   Visualization version   GIF version

Theorem metnrmlem1 23469
Description: Lemma for metnrm 23472. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
Assertion
Ref Expression
metnrmlem1 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ≤ (𝐴𝐷𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝐵,𝑦   𝑥,𝑇,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metnrmlem1
StepHypRef Expression
1 1xr 10702 . . 3 1 ∈ ℝ*
2 metnrmlem.1 . . . . . . 7 (𝜑𝐷 ∈ (∞Met‘𝑋))
32adantr 483 . . . . . 6 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐷 ∈ (∞Met‘𝑋))
4 metnrmlem.2 . . . . . . . . 9 (𝜑𝑆 ∈ (Clsd‘𝐽))
54adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑆 ∈ (Clsd‘𝐽))
6 eqid 2823 . . . . . . . . 9 𝐽 = 𝐽
76cldss 21639 . . . . . . . 8 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
85, 7syl 17 . . . . . . 7 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑆 𝐽)
9 metdscn.j . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
109mopnuni 23053 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
113, 10syl 17 . . . . . . 7 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑋 = 𝐽)
128, 11sseqtrrd 4010 . . . . . 6 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑆𝑋)
13 metdscn.f . . . . . . 7 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
1413metdsf 23458 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
153, 12, 14syl2anc 586 . . . . 5 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐹:𝑋⟶(0[,]+∞))
16 metnrmlem.3 . . . . . . . . 9 (𝜑𝑇 ∈ (Clsd‘𝐽))
1716adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑇 ∈ (Clsd‘𝐽))
186cldss 21639 . . . . . . . 8 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
1917, 18syl 17 . . . . . . 7 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑇 𝐽)
2019, 11sseqtrrd 4010 . . . . . 6 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝑇𝑋)
21 simprr 771 . . . . . 6 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐵𝑇)
2220, 21sseldd 3970 . . . . 5 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐵𝑋)
2315, 22ffvelrnd 6854 . . . 4 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐵) ∈ (0[,]+∞))
24 eliccxr 12826 . . . 4 ((𝐹𝐵) ∈ (0[,]+∞) → (𝐹𝐵) ∈ ℝ*)
2523, 24syl 17 . . 3 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐵) ∈ ℝ*)
26 ifcl 4513 . . 3 ((1 ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ*) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ∈ ℝ*)
271, 25, 26sylancr 589 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ∈ ℝ*)
28 simprl 769 . . . 4 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐴𝑆)
2912, 28sseldd 3970 . . 3 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → 𝐴𝑋)
30 xmetcl 22943 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
313, 29, 22, 30syl3anc 1367 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐴𝐷𝐵) ∈ ℝ*)
32 xrmin2 12574 . . 3 ((1 ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ*) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ≤ (𝐹𝐵))
331, 25, 32sylancr 589 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ≤ (𝐹𝐵))
3413metdstri 23461 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐵𝑋𝐴𝑋)) → (𝐹𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)))
353, 12, 22, 29, 34syl22anc 836 . . 3 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)))
36 xmetsym 22959 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
373, 22, 29, 36syl3anc 1367 . . . . 5 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
3813metds0 23460 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) = 0)
393, 12, 28, 38syl3anc 1367 . . . . 5 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐴) = 0)
4037, 39oveq12d 7176 . . . 4 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)) = ((𝐴𝐷𝐵) +𝑒 0))
4131xaddid1d 12639 . . . 4 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵))
4240, 41eqtrd 2858 . . 3 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)) = (𝐴𝐷𝐵))
4335, 42breqtrd 5094 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → (𝐹𝐵) ≤ (𝐴𝐷𝐵))
4427, 25, 31, 33, 43xrletrd 12558 1 ((𝜑 ∧ (𝐴𝑆𝐵𝑇)) → if(1 ≤ (𝐹𝐵), 1, (𝐹𝐵)) ≤ (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cin 3937  wss 3938  c0 4293  ifcif 4469   cuni 4840   class class class wbr 5068  cmpt 5148  ran crn 5558  wf 6353  cfv 6357  (class class class)co 7158  infcinf 8907  0cc0 10539  1c1 10540  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678   +𝑒 cxad 12508  [,]cicc 12744  ∞Metcxmet 20532  MetOpencmopn 20537  Clsdccld 21626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-ec 8293  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-icc 12748  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-cld 21629
This theorem is referenced by:  metnrmlem3  23471
  Copyright terms: Public domain W3C validator