Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > metnrmlem1 | Structured version Visualization version GIF version |
Description: Lemma for metnrm 24025. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
metdscn.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
metnrmlem.1 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
metnrmlem.2 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) |
metnrmlem.3 | ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) |
metnrmlem.4 | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
Ref | Expression |
---|---|
metnrmlem1 | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1xr 11034 | . . 3 ⊢ 1 ∈ ℝ* | |
2 | metnrmlem.1 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
3 | 2 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐷 ∈ (∞Met‘𝑋)) |
4 | metnrmlem.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) | |
5 | 4 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑆 ∈ (Clsd‘𝐽)) |
6 | eqid 2738 | . . . . . . . . 9 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
7 | 6 | cldss 22180 | . . . . . . . 8 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ ∪ 𝐽) |
8 | 5, 7 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑆 ⊆ ∪ 𝐽) |
9 | metdscn.j | . . . . . . . . 9 ⊢ 𝐽 = (MetOpen‘𝐷) | |
10 | 9 | mopnuni 23594 | . . . . . . . 8 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
11 | 3, 10 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑋 = ∪ 𝐽) |
12 | 8, 11 | sseqtrrd 3962 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑆 ⊆ 𝑋) |
13 | metdscn.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
14 | 13 | metdsf 24011 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
15 | 3, 12, 14 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐹:𝑋⟶(0[,]+∞)) |
16 | metnrmlem.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) | |
17 | 16 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑇 ∈ (Clsd‘𝐽)) |
18 | 6 | cldss 22180 | . . . . . . . 8 ⊢ (𝑇 ∈ (Clsd‘𝐽) → 𝑇 ⊆ ∪ 𝐽) |
19 | 17, 18 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑇 ⊆ ∪ 𝐽) |
20 | 19, 11 | sseqtrrd 3962 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝑇 ⊆ 𝑋) |
21 | simprr 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐵 ∈ 𝑇) | |
22 | 20, 21 | sseldd 3922 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐵 ∈ 𝑋) |
23 | 15, 22 | ffvelrnd 6962 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐵) ∈ (0[,]+∞)) |
24 | eliccxr 13167 | . . . 4 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) → (𝐹‘𝐵) ∈ ℝ*) | |
25 | 23, 24 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐵) ∈ ℝ*) |
26 | ifcl 4504 | . . 3 ⊢ ((1 ∈ ℝ* ∧ (𝐹‘𝐵) ∈ ℝ*) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ∈ ℝ*) | |
27 | 1, 25, 26 | sylancr 587 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ∈ ℝ*) |
28 | simprl 768 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐴 ∈ 𝑆) | |
29 | 12, 28 | sseldd 3922 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → 𝐴 ∈ 𝑋) |
30 | xmetcl 23484 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
31 | 3, 29, 22, 30 | syl3anc 1370 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐴𝐷𝐵) ∈ ℝ*) |
32 | xrmin2 12912 | . . 3 ⊢ ((1 ∈ ℝ* ∧ (𝐹‘𝐵) ∈ ℝ*) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐹‘𝐵)) | |
33 | 1, 25, 32 | sylancr 587 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐹‘𝐵)) |
34 | 13 | metdstri 24014 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐹‘𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴))) |
35 | 3, 12, 22, 29, 34 | syl22anc 836 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴))) |
36 | xmetsym 23500 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵)) | |
37 | 3, 22, 29, 36 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵)) |
38 | 13 | metds0 24013 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆) → (𝐹‘𝐴) = 0) |
39 | 3, 12, 28, 38 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐴) = 0) |
40 | 37, 39 | oveq12d 7293 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴)) = ((𝐴𝐷𝐵) +𝑒 0)) |
41 | 31 | xaddid1d 12977 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵)) |
42 | 40, 41 | eqtrd 2778 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴)) = (𝐴𝐷𝐵)) |
43 | 35, 42 | breqtrd 5100 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐹‘𝐵) ≤ (𝐴𝐷𝐵)) |
44 | 27, 25, 31, 33, 43 | xrletrd 12896 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ifcif 4459 ∪ cuni 4839 class class class wbr 5074 ↦ cmpt 5157 ran crn 5590 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 infcinf 9200 0cc0 10871 1c1 10872 +∞cpnf 11006 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 +𝑒 cxad 12846 [,]cicc 13082 ∞Metcxmet 20582 MetOpencmopn 20587 Clsdccld 22167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-ec 8500 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-icc 13086 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-bases 22096 df-cld 22170 |
This theorem is referenced by: metnrmlem3 24024 |
Copyright terms: Public domain | W3C validator |