| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modxai | GIF version | ||
| Description: Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.) |
| Ref | Expression |
|---|---|
| modxai.1 | ⊢ 𝑁 ∈ ℕ |
| modxai.2 | ⊢ 𝐴 ∈ ℕ |
| modxai.3 | ⊢ 𝐵 ∈ ℕ0 |
| modxai.4 | ⊢ 𝐷 ∈ ℤ |
| modxai.5 | ⊢ 𝐾 ∈ ℕ0 |
| modxai.6 | ⊢ 𝑀 ∈ ℕ0 |
| modxai.7 | ⊢ 𝐶 ∈ ℕ0 |
| modxai.8 | ⊢ 𝐿 ∈ ℕ0 |
| modxai.11 | ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) |
| modxai.12 | ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) |
| modxai.9 | ⊢ (𝐵 + 𝐶) = 𝐸 |
| modxai.10 | ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) |
| Ref | Expression |
|---|---|
| modxai | ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modxai.9 | . . . . 5 ⊢ (𝐵 + 𝐶) = 𝐸 | |
| 2 | 1 | oveq2i 5962 | . . . 4 ⊢ (𝐴↑(𝐵 + 𝐶)) = (𝐴↑𝐸) |
| 3 | modxai.2 | . . . . . 6 ⊢ 𝐴 ∈ ℕ | |
| 4 | 3 | nncni 9053 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 5 | modxai.3 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
| 6 | modxai.7 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
| 7 | expadd 10733 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (𝐴↑(𝐵 + 𝐶)) = ((𝐴↑𝐵) · (𝐴↑𝐶))) | |
| 8 | 4, 5, 6, 7 | mp3an 1350 | . . . 4 ⊢ (𝐴↑(𝐵 + 𝐶)) = ((𝐴↑𝐵) · (𝐴↑𝐶)) |
| 9 | 2, 8 | eqtr3i 2229 | . . 3 ⊢ (𝐴↑𝐸) = ((𝐴↑𝐵) · (𝐴↑𝐶)) |
| 10 | 9 | oveq1i 5961 | . 2 ⊢ ((𝐴↑𝐸) mod 𝑁) = (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) |
| 11 | nnexpcl 10704 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ ℕ) | |
| 12 | 3, 5, 11 | mp2an 426 | . . . . . . . 8 ⊢ (𝐴↑𝐵) ∈ ℕ |
| 13 | 12 | nnzi 9400 | . . . . . . 7 ⊢ (𝐴↑𝐵) ∈ ℤ |
| 14 | 13 | a1i 9 | . . . . . 6 ⊢ (⊤ → (𝐴↑𝐵) ∈ ℤ) |
| 15 | modxai.5 | . . . . . . . 8 ⊢ 𝐾 ∈ ℕ0 | |
| 16 | 15 | nn0zi 9401 | . . . . . . 7 ⊢ 𝐾 ∈ ℤ |
| 17 | 16 | a1i 9 | . . . . . 6 ⊢ (⊤ → 𝐾 ∈ ℤ) |
| 18 | nnexpcl 10704 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (𝐴↑𝐶) ∈ ℕ) | |
| 19 | 3, 6, 18 | mp2an 426 | . . . . . . . 8 ⊢ (𝐴↑𝐶) ∈ ℕ |
| 20 | 19 | nnzi 9400 | . . . . . . 7 ⊢ (𝐴↑𝐶) ∈ ℤ |
| 21 | 20 | a1i 9 | . . . . . 6 ⊢ (⊤ → (𝐴↑𝐶) ∈ ℤ) |
| 22 | modxai.8 | . . . . . . . 8 ⊢ 𝐿 ∈ ℕ0 | |
| 23 | 22 | nn0zi 9401 | . . . . . . 7 ⊢ 𝐿 ∈ ℤ |
| 24 | 23 | a1i 9 | . . . . . 6 ⊢ (⊤ → 𝐿 ∈ ℤ) |
| 25 | modxai.1 | . . . . . . 7 ⊢ 𝑁 ∈ ℕ | |
| 26 | nnq 9761 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℚ) | |
| 27 | 25, 26 | mp1i 10 | . . . . . 6 ⊢ (⊤ → 𝑁 ∈ ℚ) |
| 28 | nnrp 9792 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
| 29 | 25, 28 | mp1i 10 | . . . . . . 7 ⊢ (⊤ → 𝑁 ∈ ℝ+) |
| 30 | 29 | rpgt0d 9828 | . . . . . 6 ⊢ (⊤ → 0 < 𝑁) |
| 31 | modxai.11 | . . . . . . 7 ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) | |
| 32 | 31 | a1i 9 | . . . . . 6 ⊢ (⊤ → ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁)) |
| 33 | modxai.12 | . . . . . . 7 ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) | |
| 34 | 33 | a1i 9 | . . . . . 6 ⊢ (⊤ → ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁)) |
| 35 | 14, 17, 21, 24, 27, 30, 32, 34 | modqmul12d 10530 | . . . . 5 ⊢ (⊤ → (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁)) |
| 36 | 35 | mptru 1382 | . . . 4 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁) |
| 37 | modxai.10 | . . . . . 6 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) | |
| 38 | modxai.4 | . . . . . . . . 9 ⊢ 𝐷 ∈ ℤ | |
| 39 | zcn 9384 | . . . . . . . . 9 ⊢ (𝐷 ∈ ℤ → 𝐷 ∈ ℂ) | |
| 40 | 38, 39 | ax-mp 5 | . . . . . . . 8 ⊢ 𝐷 ∈ ℂ |
| 41 | 25 | nncni 9053 | . . . . . . . 8 ⊢ 𝑁 ∈ ℂ |
| 42 | 40, 41 | mulcli 8084 | . . . . . . 7 ⊢ (𝐷 · 𝑁) ∈ ℂ |
| 43 | modxai.6 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
| 44 | 43 | nn0cni 9314 | . . . . . . 7 ⊢ 𝑀 ∈ ℂ |
| 45 | 42, 44 | addcomi 8223 | . . . . . 6 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝑀 + (𝐷 · 𝑁)) |
| 46 | 37, 45 | eqtr3i 2229 | . . . . 5 ⊢ (𝐾 · 𝐿) = (𝑀 + (𝐷 · 𝑁)) |
| 47 | 46 | oveq1i 5961 | . . . 4 ⊢ ((𝐾 · 𝐿) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) |
| 48 | 36, 47 | eqtri 2227 | . . 3 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) |
| 49 | nn0z 9399 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ) | |
| 50 | zq 9754 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℚ) | |
| 51 | 43, 49, 50 | mp2b 8 | . . . 4 ⊢ 𝑀 ∈ ℚ |
| 52 | 25, 26 | ax-mp 5 | . . . 4 ⊢ 𝑁 ∈ ℚ |
| 53 | 30 | mptru 1382 | . . . 4 ⊢ 0 < 𝑁 |
| 54 | modqcyc 10511 | . . . 4 ⊢ (((𝑀 ∈ ℚ ∧ 𝐷 ∈ ℤ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁)) | |
| 55 | 51, 38, 52, 53, 54 | mp4an 427 | . . 3 ⊢ ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁) |
| 56 | 48, 55 | eqtri 2227 | . 2 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = (𝑀 mod 𝑁) |
| 57 | 10, 56 | eqtri 2227 | 1 ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ⊤wtru 1374 ∈ wcel 2177 class class class wbr 4047 (class class class)co 5951 ℂcc 7930 0cc0 7932 + caddc 7935 · cmul 7937 < clt 8114 ℕcn 9043 ℕ0cn0 9302 ℤcz 9379 ℚcq 9747 ℝ+crp 9782 mod cmo 10474 ↑cexp 10690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-exp 10691 |
| This theorem is referenced by: mod2xi 12784 modxp1i 12785 |
| Copyright terms: Public domain | W3C validator |