| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modxai | GIF version | ||
| Description: Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.) |
| Ref | Expression |
|---|---|
| modxai.1 | ⊢ 𝑁 ∈ ℕ |
| modxai.2 | ⊢ 𝐴 ∈ ℕ |
| modxai.3 | ⊢ 𝐵 ∈ ℕ0 |
| modxai.4 | ⊢ 𝐷 ∈ ℤ |
| modxai.5 | ⊢ 𝐾 ∈ ℕ0 |
| modxai.6 | ⊢ 𝑀 ∈ ℕ0 |
| modxai.7 | ⊢ 𝐶 ∈ ℕ0 |
| modxai.8 | ⊢ 𝐿 ∈ ℕ0 |
| modxai.11 | ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) |
| modxai.12 | ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) |
| modxai.9 | ⊢ (𝐵 + 𝐶) = 𝐸 |
| modxai.10 | ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) |
| Ref | Expression |
|---|---|
| modxai | ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modxai.9 | . . . . 5 ⊢ (𝐵 + 𝐶) = 𝐸 | |
| 2 | 1 | oveq2i 5936 | . . . 4 ⊢ (𝐴↑(𝐵 + 𝐶)) = (𝐴↑𝐸) |
| 3 | modxai.2 | . . . . . 6 ⊢ 𝐴 ∈ ℕ | |
| 4 | 3 | nncni 9017 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 5 | modxai.3 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
| 6 | modxai.7 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
| 7 | expadd 10690 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (𝐴↑(𝐵 + 𝐶)) = ((𝐴↑𝐵) · (𝐴↑𝐶))) | |
| 8 | 4, 5, 6, 7 | mp3an 1348 | . . . 4 ⊢ (𝐴↑(𝐵 + 𝐶)) = ((𝐴↑𝐵) · (𝐴↑𝐶)) |
| 9 | 2, 8 | eqtr3i 2219 | . . 3 ⊢ (𝐴↑𝐸) = ((𝐴↑𝐵) · (𝐴↑𝐶)) |
| 10 | 9 | oveq1i 5935 | . 2 ⊢ ((𝐴↑𝐸) mod 𝑁) = (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) |
| 11 | nnexpcl 10661 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ ℕ) | |
| 12 | 3, 5, 11 | mp2an 426 | . . . . . . . 8 ⊢ (𝐴↑𝐵) ∈ ℕ |
| 13 | 12 | nnzi 9364 | . . . . . . 7 ⊢ (𝐴↑𝐵) ∈ ℤ |
| 14 | 13 | a1i 9 | . . . . . 6 ⊢ (⊤ → (𝐴↑𝐵) ∈ ℤ) |
| 15 | modxai.5 | . . . . . . . 8 ⊢ 𝐾 ∈ ℕ0 | |
| 16 | 15 | nn0zi 9365 | . . . . . . 7 ⊢ 𝐾 ∈ ℤ |
| 17 | 16 | a1i 9 | . . . . . 6 ⊢ (⊤ → 𝐾 ∈ ℤ) |
| 18 | nnexpcl 10661 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (𝐴↑𝐶) ∈ ℕ) | |
| 19 | 3, 6, 18 | mp2an 426 | . . . . . . . 8 ⊢ (𝐴↑𝐶) ∈ ℕ |
| 20 | 19 | nnzi 9364 | . . . . . . 7 ⊢ (𝐴↑𝐶) ∈ ℤ |
| 21 | 20 | a1i 9 | . . . . . 6 ⊢ (⊤ → (𝐴↑𝐶) ∈ ℤ) |
| 22 | modxai.8 | . . . . . . . 8 ⊢ 𝐿 ∈ ℕ0 | |
| 23 | 22 | nn0zi 9365 | . . . . . . 7 ⊢ 𝐿 ∈ ℤ |
| 24 | 23 | a1i 9 | . . . . . 6 ⊢ (⊤ → 𝐿 ∈ ℤ) |
| 25 | modxai.1 | . . . . . . 7 ⊢ 𝑁 ∈ ℕ | |
| 26 | nnq 9724 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℚ) | |
| 27 | 25, 26 | mp1i 10 | . . . . . 6 ⊢ (⊤ → 𝑁 ∈ ℚ) |
| 28 | nnrp 9755 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
| 29 | 25, 28 | mp1i 10 | . . . . . . 7 ⊢ (⊤ → 𝑁 ∈ ℝ+) |
| 30 | 29 | rpgt0d 9791 | . . . . . 6 ⊢ (⊤ → 0 < 𝑁) |
| 31 | modxai.11 | . . . . . . 7 ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) | |
| 32 | 31 | a1i 9 | . . . . . 6 ⊢ (⊤ → ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁)) |
| 33 | modxai.12 | . . . . . . 7 ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) | |
| 34 | 33 | a1i 9 | . . . . . 6 ⊢ (⊤ → ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁)) |
| 35 | 14, 17, 21, 24, 27, 30, 32, 34 | modqmul12d 10487 | . . . . 5 ⊢ (⊤ → (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁)) |
| 36 | 35 | mptru 1373 | . . . 4 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁) |
| 37 | modxai.10 | . . . . . 6 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) | |
| 38 | modxai.4 | . . . . . . . . 9 ⊢ 𝐷 ∈ ℤ | |
| 39 | zcn 9348 | . . . . . . . . 9 ⊢ (𝐷 ∈ ℤ → 𝐷 ∈ ℂ) | |
| 40 | 38, 39 | ax-mp 5 | . . . . . . . 8 ⊢ 𝐷 ∈ ℂ |
| 41 | 25 | nncni 9017 | . . . . . . . 8 ⊢ 𝑁 ∈ ℂ |
| 42 | 40, 41 | mulcli 8048 | . . . . . . 7 ⊢ (𝐷 · 𝑁) ∈ ℂ |
| 43 | modxai.6 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
| 44 | 43 | nn0cni 9278 | . . . . . . 7 ⊢ 𝑀 ∈ ℂ |
| 45 | 42, 44 | addcomi 8187 | . . . . . 6 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝑀 + (𝐷 · 𝑁)) |
| 46 | 37, 45 | eqtr3i 2219 | . . . . 5 ⊢ (𝐾 · 𝐿) = (𝑀 + (𝐷 · 𝑁)) |
| 47 | 46 | oveq1i 5935 | . . . 4 ⊢ ((𝐾 · 𝐿) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) |
| 48 | 36, 47 | eqtri 2217 | . . 3 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) |
| 49 | nn0z 9363 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ) | |
| 50 | zq 9717 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℚ) | |
| 51 | 43, 49, 50 | mp2b 8 | . . . 4 ⊢ 𝑀 ∈ ℚ |
| 52 | 25, 26 | ax-mp 5 | . . . 4 ⊢ 𝑁 ∈ ℚ |
| 53 | 30 | mptru 1373 | . . . 4 ⊢ 0 < 𝑁 |
| 54 | modqcyc 10468 | . . . 4 ⊢ (((𝑀 ∈ ℚ ∧ 𝐷 ∈ ℤ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁)) | |
| 55 | 51, 38, 52, 53, 54 | mp4an 427 | . . 3 ⊢ ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁) |
| 56 | 48, 55 | eqtri 2217 | . 2 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = (𝑀 mod 𝑁) |
| 57 | 10, 56 | eqtri 2217 | 1 ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ⊤wtru 1365 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 ℂcc 7894 0cc0 7896 + caddc 7899 · cmul 7901 < clt 8078 ℕcn 9007 ℕ0cn0 9266 ℤcz 9343 ℚcq 9710 ℝ+crp 9745 mod cmo 10431 ↑cexp 10647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fl 10377 df-mod 10432 df-seqfrec 10557 df-exp 10648 |
| This theorem is referenced by: mod2xi 12611 modxp1i 12612 |
| Copyright terms: Public domain | W3C validator |