| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modxai | GIF version | ||
| Description: Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.) |
| Ref | Expression |
|---|---|
| modxai.1 | ⊢ 𝑁 ∈ ℕ |
| modxai.2 | ⊢ 𝐴 ∈ ℕ |
| modxai.3 | ⊢ 𝐵 ∈ ℕ0 |
| modxai.4 | ⊢ 𝐷 ∈ ℤ |
| modxai.5 | ⊢ 𝐾 ∈ ℕ0 |
| modxai.6 | ⊢ 𝑀 ∈ ℕ0 |
| modxai.7 | ⊢ 𝐶 ∈ ℕ0 |
| modxai.8 | ⊢ 𝐿 ∈ ℕ0 |
| modxai.11 | ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) |
| modxai.12 | ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) |
| modxai.9 | ⊢ (𝐵 + 𝐶) = 𝐸 |
| modxai.10 | ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) |
| Ref | Expression |
|---|---|
| modxai | ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modxai.9 | . . . . 5 ⊢ (𝐵 + 𝐶) = 𝐸 | |
| 2 | 1 | oveq2i 6018 | . . . 4 ⊢ (𝐴↑(𝐵 + 𝐶)) = (𝐴↑𝐸) |
| 3 | modxai.2 | . . . . . 6 ⊢ 𝐴 ∈ ℕ | |
| 4 | 3 | nncni 9128 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 5 | modxai.3 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
| 6 | modxai.7 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
| 7 | expadd 10811 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (𝐴↑(𝐵 + 𝐶)) = ((𝐴↑𝐵) · (𝐴↑𝐶))) | |
| 8 | 4, 5, 6, 7 | mp3an 1371 | . . . 4 ⊢ (𝐴↑(𝐵 + 𝐶)) = ((𝐴↑𝐵) · (𝐴↑𝐶)) |
| 9 | 2, 8 | eqtr3i 2252 | . . 3 ⊢ (𝐴↑𝐸) = ((𝐴↑𝐵) · (𝐴↑𝐶)) |
| 10 | 9 | oveq1i 6017 | . 2 ⊢ ((𝐴↑𝐸) mod 𝑁) = (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) |
| 11 | nnexpcl 10782 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ ℕ) | |
| 12 | 3, 5, 11 | mp2an 426 | . . . . . . . 8 ⊢ (𝐴↑𝐵) ∈ ℕ |
| 13 | 12 | nnzi 9475 | . . . . . . 7 ⊢ (𝐴↑𝐵) ∈ ℤ |
| 14 | 13 | a1i 9 | . . . . . 6 ⊢ (⊤ → (𝐴↑𝐵) ∈ ℤ) |
| 15 | modxai.5 | . . . . . . . 8 ⊢ 𝐾 ∈ ℕ0 | |
| 16 | 15 | nn0zi 9476 | . . . . . . 7 ⊢ 𝐾 ∈ ℤ |
| 17 | 16 | a1i 9 | . . . . . 6 ⊢ (⊤ → 𝐾 ∈ ℤ) |
| 18 | nnexpcl 10782 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (𝐴↑𝐶) ∈ ℕ) | |
| 19 | 3, 6, 18 | mp2an 426 | . . . . . . . 8 ⊢ (𝐴↑𝐶) ∈ ℕ |
| 20 | 19 | nnzi 9475 | . . . . . . 7 ⊢ (𝐴↑𝐶) ∈ ℤ |
| 21 | 20 | a1i 9 | . . . . . 6 ⊢ (⊤ → (𝐴↑𝐶) ∈ ℤ) |
| 22 | modxai.8 | . . . . . . . 8 ⊢ 𝐿 ∈ ℕ0 | |
| 23 | 22 | nn0zi 9476 | . . . . . . 7 ⊢ 𝐿 ∈ ℤ |
| 24 | 23 | a1i 9 | . . . . . 6 ⊢ (⊤ → 𝐿 ∈ ℤ) |
| 25 | modxai.1 | . . . . . . 7 ⊢ 𝑁 ∈ ℕ | |
| 26 | nnq 9836 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℚ) | |
| 27 | 25, 26 | mp1i 10 | . . . . . 6 ⊢ (⊤ → 𝑁 ∈ ℚ) |
| 28 | nnrp 9867 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
| 29 | 25, 28 | mp1i 10 | . . . . . . 7 ⊢ (⊤ → 𝑁 ∈ ℝ+) |
| 30 | 29 | rpgt0d 9903 | . . . . . 6 ⊢ (⊤ → 0 < 𝑁) |
| 31 | modxai.11 | . . . . . . 7 ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) | |
| 32 | 31 | a1i 9 | . . . . . 6 ⊢ (⊤ → ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁)) |
| 33 | modxai.12 | . . . . . . 7 ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) | |
| 34 | 33 | a1i 9 | . . . . . 6 ⊢ (⊤ → ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁)) |
| 35 | 14, 17, 21, 24, 27, 30, 32, 34 | modqmul12d 10608 | . . . . 5 ⊢ (⊤ → (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁)) |
| 36 | 35 | mptru 1404 | . . . 4 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁) |
| 37 | modxai.10 | . . . . . 6 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) | |
| 38 | modxai.4 | . . . . . . . . 9 ⊢ 𝐷 ∈ ℤ | |
| 39 | zcn 9459 | . . . . . . . . 9 ⊢ (𝐷 ∈ ℤ → 𝐷 ∈ ℂ) | |
| 40 | 38, 39 | ax-mp 5 | . . . . . . . 8 ⊢ 𝐷 ∈ ℂ |
| 41 | 25 | nncni 9128 | . . . . . . . 8 ⊢ 𝑁 ∈ ℂ |
| 42 | 40, 41 | mulcli 8159 | . . . . . . 7 ⊢ (𝐷 · 𝑁) ∈ ℂ |
| 43 | modxai.6 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
| 44 | 43 | nn0cni 9389 | . . . . . . 7 ⊢ 𝑀 ∈ ℂ |
| 45 | 42, 44 | addcomi 8298 | . . . . . 6 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝑀 + (𝐷 · 𝑁)) |
| 46 | 37, 45 | eqtr3i 2252 | . . . . 5 ⊢ (𝐾 · 𝐿) = (𝑀 + (𝐷 · 𝑁)) |
| 47 | 46 | oveq1i 6017 | . . . 4 ⊢ ((𝐾 · 𝐿) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) |
| 48 | 36, 47 | eqtri 2250 | . . 3 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) |
| 49 | nn0z 9474 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ) | |
| 50 | zq 9829 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℚ) | |
| 51 | 43, 49, 50 | mp2b 8 | . . . 4 ⊢ 𝑀 ∈ ℚ |
| 52 | 25, 26 | ax-mp 5 | . . . 4 ⊢ 𝑁 ∈ ℚ |
| 53 | 30 | mptru 1404 | . . . 4 ⊢ 0 < 𝑁 |
| 54 | modqcyc 10589 | . . . 4 ⊢ (((𝑀 ∈ ℚ ∧ 𝐷 ∈ ℤ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁)) | |
| 55 | 51, 38, 52, 53, 54 | mp4an 427 | . . 3 ⊢ ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁) |
| 56 | 48, 55 | eqtri 2250 | . 2 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = (𝑀 mod 𝑁) |
| 57 | 10, 56 | eqtri 2250 | 1 ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 class class class wbr 4083 (class class class)co 6007 ℂcc 8005 0cc0 8007 + caddc 8010 · cmul 8012 < clt 8189 ℕcn 9118 ℕ0cn0 9377 ℤcz 9454 ℚcq 9822 ℝ+crp 9857 mod cmo 10552 ↑cexp 10768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fl 10498 df-mod 10553 df-seqfrec 10678 df-exp 10769 |
| This theorem is referenced by: mod2xi 12948 modxp1i 12949 |
| Copyright terms: Public domain | W3C validator |