![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > nnnninfen | GIF version |
Description: Equinumerosity of the natural numbers and ℕ∞ is equivalent to the Limited Principle of Omniscience (LPO). Remark in Section 1.1 of [Pradic2025], p. 2. (Contributed by Jim Kingdon, 8-Jul-2025.) |
Ref | Expression |
---|---|
nnnninfen | ⊢ (ω ≈ ℕ∞ ↔ ω ∈ Omni) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninfomni 15509 | . . 3 ⊢ ℕ∞ ∈ Omni | |
2 | enomni 7198 | . . 3 ⊢ (ω ≈ ℕ∞ → (ω ∈ Omni ↔ ℕ∞ ∈ Omni)) | |
3 | 1, 2 | mpbiri 168 | . 2 ⊢ (ω ≈ ℕ∞ → ω ∈ Omni) |
4 | lpowlpo 7227 | . . . . . 6 ⊢ (ω ∈ Omni → ω ∈ WOmni) | |
5 | nninfwlpo 7238 | . . . . . 6 ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ↔ ω ∈ WOmni) | |
6 | 4, 5 | sylibr 134 | . . . . 5 ⊢ (ω ∈ Omni → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) |
7 | nninfct 12178 | . . . . . 6 ⊢ (ω ∈ Omni → ∃𝑧 𝑧:ω–onto→(ℕ∞ ⊔ 1o)) | |
8 | infnninf 7183 | . . . . . . 7 ⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ | |
9 | elex2 2776 | . . . . . . 7 ⊢ ((𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ → ∃𝑗 𝑗 ∈ ℕ∞) | |
10 | ctm 7168 | . . . . . . 7 ⊢ (∃𝑗 𝑗 ∈ ℕ∞ → (∃𝑧 𝑧:ω–onto→(ℕ∞ ⊔ 1o) ↔ ∃𝑧 𝑧:ω–onto→ℕ∞)) | |
11 | 8, 9, 10 | mp2b 8 | . . . . . 6 ⊢ (∃𝑧 𝑧:ω–onto→(ℕ∞ ⊔ 1o) ↔ ∃𝑧 𝑧:ω–onto→ℕ∞) |
12 | 7, 11 | sylib 122 | . . . . 5 ⊢ (ω ∈ Omni → ∃𝑧 𝑧:ω–onto→ℕ∞) |
13 | nninfinf 10514 | . . . . . 6 ⊢ ω ≼ ℕ∞ | |
14 | 13 | a1i 9 | . . . . 5 ⊢ (ω ∈ Omni → ω ≼ ℕ∞) |
15 | ctinf 12587 | . . . . 5 ⊢ (ℕ∞ ≈ ℕ ↔ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ ∃𝑧 𝑧:ω–onto→ℕ∞ ∧ ω ≼ ℕ∞)) | |
16 | 6, 12, 14, 15 | syl3anbrc 1183 | . . . 4 ⊢ (ω ∈ Omni → ℕ∞ ≈ ℕ) |
17 | nnenom 10505 | . . . 4 ⊢ ℕ ≈ ω | |
18 | entr 6838 | . . . 4 ⊢ ((ℕ∞ ≈ ℕ ∧ ℕ ≈ ω) → ℕ∞ ≈ ω) | |
19 | 16, 17, 18 | sylancl 413 | . . 3 ⊢ (ω ∈ Omni → ℕ∞ ≈ ω) |
20 | 19 | ensymd 6837 | . 2 ⊢ (ω ∈ Omni → ω ≈ ℕ∞) |
21 | 3, 20 | impbii 126 | 1 ⊢ (ω ≈ ℕ∞ ↔ ω ∈ Omni) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 DECID wdc 835 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 class class class wbr 4029 ↦ cmpt 4090 ωcom 4622 –onto→wfo 5252 1oc1o 6462 ≈ cen 6792 ≼ cdom 6793 ⊔ cdju 7096 ℕ∞xnninf 7178 Omnicomni 7193 WOmnicwomni 7222 ℕcn 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-1o 6469 df-2o 6470 df-er 6587 df-map 6704 df-pm 6705 df-en 6795 df-dom 6796 df-fin 6797 df-sup 7043 df-inf 7044 df-dju 7097 df-inl 7106 df-inr 7107 df-case 7143 df-nninf 7179 df-omni 7194 df-markov 7211 df-womni 7223 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-xnn0 9304 df-z 9318 df-uz 9593 df-fz 10075 df-fzo 10209 df-seqfrec 10519 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |