| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nnnninfen | GIF version | ||
| Description: Equinumerosity of the natural numbers and ℕ∞ is equivalent to the Limited Principle of Omniscience (LPO). Remark in Section 1.1 of [Pradic2025], p. 2. (Contributed by Jim Kingdon, 8-Jul-2025.) |
| Ref | Expression |
|---|---|
| nnnninfen | ⊢ (ω ≈ ℕ∞ ↔ ω ∈ Omni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfomni 16296 | . . 3 ⊢ ℕ∞ ∈ Omni | |
| 2 | enomni 7274 | . . 3 ⊢ (ω ≈ ℕ∞ → (ω ∈ Omni ↔ ℕ∞ ∈ Omni)) | |
| 3 | 1, 2 | mpbiri 168 | . 2 ⊢ (ω ≈ ℕ∞ → ω ∈ Omni) |
| 4 | lpowlpo 7303 | . . . . . 6 ⊢ (ω ∈ Omni → ω ∈ WOmni) | |
| 5 | nninfwlpo 7316 | . . . . . 6 ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ↔ ω ∈ WOmni) | |
| 6 | 4, 5 | sylibr 134 | . . . . 5 ⊢ (ω ∈ Omni → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) |
| 7 | nninfct 12528 | . . . . . 6 ⊢ (ω ∈ Omni → ∃𝑧 𝑧:ω–onto→(ℕ∞ ⊔ 1o)) | |
| 8 | infnninf 7259 | . . . . . . 7 ⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ | |
| 9 | elex2 2796 | . . . . . . 7 ⊢ ((𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ → ∃𝑗 𝑗 ∈ ℕ∞) | |
| 10 | ctm 7244 | . . . . . . 7 ⊢ (∃𝑗 𝑗 ∈ ℕ∞ → (∃𝑧 𝑧:ω–onto→(ℕ∞ ⊔ 1o) ↔ ∃𝑧 𝑧:ω–onto→ℕ∞)) | |
| 11 | 8, 9, 10 | mp2b 8 | . . . . . 6 ⊢ (∃𝑧 𝑧:ω–onto→(ℕ∞ ⊔ 1o) ↔ ∃𝑧 𝑧:ω–onto→ℕ∞) |
| 12 | 7, 11 | sylib 122 | . . . . 5 ⊢ (ω ∈ Omni → ∃𝑧 𝑧:ω–onto→ℕ∞) |
| 13 | nninfinf 10632 | . . . . . 6 ⊢ ω ≼ ℕ∞ | |
| 14 | 13 | a1i 9 | . . . . 5 ⊢ (ω ∈ Omni → ω ≼ ℕ∞) |
| 15 | ctinf 12967 | . . . . 5 ⊢ (ℕ∞ ≈ ℕ ↔ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ ∃𝑧 𝑧:ω–onto→ℕ∞ ∧ ω ≼ ℕ∞)) | |
| 16 | 6, 12, 14, 15 | syl3anbrc 1186 | . . . 4 ⊢ (ω ∈ Omni → ℕ∞ ≈ ℕ) |
| 17 | nnenom 10623 | . . . 4 ⊢ ℕ ≈ ω | |
| 18 | entr 6906 | . . . 4 ⊢ ((ℕ∞ ≈ ℕ ∧ ℕ ≈ ω) → ℕ∞ ≈ ω) | |
| 19 | 16, 17, 18 | sylancl 413 | . . 3 ⊢ (ω ∈ Omni → ℕ∞ ≈ ω) |
| 20 | 19 | ensymd 6905 | . 2 ⊢ (ω ∈ Omni → ω ≈ ℕ∞) |
| 21 | 3, 20 | impbii 126 | 1 ⊢ (ω ≈ ℕ∞ ↔ ω ∈ Omni) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 DECID wdc 838 ∃wex 1518 ∈ wcel 2180 ∀wral 2488 class class class wbr 4062 ↦ cmpt 4124 ωcom 4659 –onto→wfo 5292 1oc1o 6525 ≈ cen 6855 ≼ cdom 6856 ⊔ cdju 7172 ℕ∞xnninf 7254 Omnicomni 7269 WOmnicwomni 7298 ℕcn 9078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-1o 6532 df-2o 6533 df-er 6650 df-map 6767 df-pm 6768 df-en 6858 df-dom 6859 df-fin 6860 df-sup 7119 df-inf 7120 df-dju 7173 df-inl 7182 df-inr 7183 df-case 7219 df-nninf 7255 df-omni 7270 df-markov 7287 df-womni 7299 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-n0 9338 df-xnn0 9401 df-z 9415 df-uz 9691 df-fz 10173 df-fzo 10307 df-seqfrec 10637 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |