| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nnnninfen | GIF version | ||
| Description: Equinumerosity of the natural numbers and ℕ∞ is equivalent to the Limited Principle of Omniscience (LPO). Remark in Section 1.1 of [Pradic2025], p. 2. (Contributed by Jim Kingdon, 8-Jul-2025.) |
| Ref | Expression |
|---|---|
| nnnninfen | ⊢ (ω ≈ ℕ∞ ↔ ω ∈ Omni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfomni 16030 | . . 3 ⊢ ℕ∞ ∈ Omni | |
| 2 | enomni 7248 | . . 3 ⊢ (ω ≈ ℕ∞ → (ω ∈ Omni ↔ ℕ∞ ∈ Omni)) | |
| 3 | 1, 2 | mpbiri 168 | . 2 ⊢ (ω ≈ ℕ∞ → ω ∈ Omni) |
| 4 | lpowlpo 7277 | . . . . . 6 ⊢ (ω ∈ Omni → ω ∈ WOmni) | |
| 5 | nninfwlpo 7290 | . . . . . 6 ⊢ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ↔ ω ∈ WOmni) | |
| 6 | 4, 5 | sylibr 134 | . . . . 5 ⊢ (ω ∈ Omni → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) |
| 7 | nninfct 12406 | . . . . . 6 ⊢ (ω ∈ Omni → ∃𝑧 𝑧:ω–onto→(ℕ∞ ⊔ 1o)) | |
| 8 | infnninf 7233 | . . . . . . 7 ⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ | |
| 9 | elex2 2789 | . . . . . . 7 ⊢ ((𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ → ∃𝑗 𝑗 ∈ ℕ∞) | |
| 10 | ctm 7218 | . . . . . . 7 ⊢ (∃𝑗 𝑗 ∈ ℕ∞ → (∃𝑧 𝑧:ω–onto→(ℕ∞ ⊔ 1o) ↔ ∃𝑧 𝑧:ω–onto→ℕ∞)) | |
| 11 | 8, 9, 10 | mp2b 8 | . . . . . 6 ⊢ (∃𝑧 𝑧:ω–onto→(ℕ∞ ⊔ 1o) ↔ ∃𝑧 𝑧:ω–onto→ℕ∞) |
| 12 | 7, 11 | sylib 122 | . . . . 5 ⊢ (ω ∈ Omni → ∃𝑧 𝑧:ω–onto→ℕ∞) |
| 13 | nninfinf 10595 | . . . . . 6 ⊢ ω ≼ ℕ∞ | |
| 14 | 13 | a1i 9 | . . . . 5 ⊢ (ω ∈ Omni → ω ≼ ℕ∞) |
| 15 | ctinf 12845 | . . . . 5 ⊢ (ℕ∞ ≈ ℕ ↔ (∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ∧ ∃𝑧 𝑧:ω–onto→ℕ∞ ∧ ω ≼ ℕ∞)) | |
| 16 | 6, 12, 14, 15 | syl3anbrc 1184 | . . . 4 ⊢ (ω ∈ Omni → ℕ∞ ≈ ℕ) |
| 17 | nnenom 10586 | . . . 4 ⊢ ℕ ≈ ω | |
| 18 | entr 6883 | . . . 4 ⊢ ((ℕ∞ ≈ ℕ ∧ ℕ ≈ ω) → ℕ∞ ≈ ω) | |
| 19 | 16, 17, 18 | sylancl 413 | . . 3 ⊢ (ω ∈ Omni → ℕ∞ ≈ ω) |
| 20 | 19 | ensymd 6882 | . 2 ⊢ (ω ∈ Omni → ω ≈ ℕ∞) |
| 21 | 3, 20 | impbii 126 | 1 ⊢ (ω ≈ ℕ∞ ↔ ω ∈ Omni) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 DECID wdc 836 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 class class class wbr 4047 ↦ cmpt 4109 ωcom 4642 –onto→wfo 5274 1oc1o 6502 ≈ cen 6832 ≼ cdom 6833 ⊔ cdju 7146 ℕ∞xnninf 7228 Omnicomni 7243 WOmnicwomni 7272 ℕcn 9043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-1o 6509 df-2o 6510 df-er 6627 df-map 6744 df-pm 6745 df-en 6835 df-dom 6836 df-fin 6837 df-sup 7093 df-inf 7094 df-dju 7147 df-inl 7156 df-inr 7157 df-case 7193 df-nninf 7229 df-omni 7244 df-markov 7261 df-womni 7273 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-n0 9303 df-xnn0 9366 df-z 9380 df-uz 9656 df-fz 10138 df-fzo 10272 df-seqfrec 10600 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |