![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recl | GIF version |
Description: The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
recl | ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reval 10993 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) | |
2 | cjth 10990 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)) | |
3 | 2 | simpld 112 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) ∈ ℝ) |
4 | 3 | rehalfcld 9229 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) / 2) ∈ ℝ) |
5 | 1, 4 | eqeltrd 2270 | 1 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 ℝcr 7871 ici 7874 + caddc 7875 · cmul 7877 − cmin 8190 / cdiv 8691 2c2 9033 ∗ccj 10983 ℜcre 10984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-2 9041 df-cj 10986 df-re 10987 |
This theorem is referenced by: imcl 10998 ref 10999 crre 11001 remim 11004 reim0b 11006 rereb 11007 mulreap 11008 cjreb 11010 recj 11011 reneg 11012 readd 11013 resub 11014 remullem 11015 remul2 11017 redivap 11018 imcj 11019 imneg 11020 imadd 11021 immul2 11024 cjadd 11028 ipcnval 11030 cjmulval 11032 cjmulge0 11033 cjneg 11034 imval2 11038 cnrecnv 11054 recli 11055 recld 11082 cnreim 11122 abs00ap 11206 absrele 11227 releabs 11240 efeul 11877 absef 11913 absefib 11914 efieq1re 11915 abscxp 15049 |
Copyright terms: Public domain | W3C validator |