| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recl | GIF version | ||
| Description: The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| Ref | Expression |
|---|---|
| recl | ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reval 11079 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) | |
| 2 | cjth 11076 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)) | |
| 3 | 2 | simpld 112 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) ∈ ℝ) |
| 4 | 3 | rehalfcld 9266 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) / 2) ∈ ℝ) |
| 5 | 1, 4 | eqeltrd 2281 | 1 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ‘cfv 5268 (class class class)co 5934 ℂcc 7905 ℝcr 7906 ici 7909 + caddc 7910 · cmul 7912 − cmin 8225 / cdiv 8727 2c2 9069 ∗ccj 11069 ℜcre 11070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-po 4341 df-iso 4342 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-2 9077 df-cj 11072 df-re 11073 |
| This theorem is referenced by: imcl 11084 ref 11085 crre 11087 remim 11090 reim0b 11092 rereb 11093 mulreap 11094 cjreb 11096 recj 11097 reneg 11098 readd 11099 resub 11100 remullem 11101 remul2 11103 redivap 11104 imcj 11105 imneg 11106 imadd 11107 immul2 11110 cjadd 11114 ipcnval 11116 cjmulval 11118 cjmulge0 11119 cjneg 11120 imval2 11124 cnrecnv 11140 recli 11141 recld 11168 cnreim 11208 abs00ap 11292 absrele 11313 releabs 11326 efeul 11964 absef 12000 absefib 12001 efieq1re 12002 abscxp 15305 |
| Copyright terms: Public domain | W3C validator |