ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recl GIF version

Theorem recl 10804
Description: The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
recl (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)

Proof of Theorem recl
StepHypRef Expression
1 reval 10800 . 2 (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2))
2 cjth 10797 . . . 4 (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))
32simpld 111 . . 3 (𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) ∈ ℝ)
43rehalfcld 9111 . 2 (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) / 2) ∈ ℝ)
51, 4eqeltrd 2247 1 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  cfv 5196  (class class class)co 5850  cc 7759  cr 7760  ici 7763   + caddc 7764   · cmul 7766  cmin 8077   / cdiv 8576  2c2 8916  ccj 10790  cre 10791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-po 4279  df-iso 4280  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-2 8924  df-cj 10793  df-re 10794
This theorem is referenced by:  imcl  10805  ref  10806  crre  10808  remim  10811  reim0b  10813  rereb  10814  mulreap  10815  cjreb  10817  recj  10818  reneg  10819  readd  10820  resub  10821  remullem  10822  remul2  10824  redivap  10825  imcj  10826  imneg  10827  imadd  10828  immul2  10831  cjadd  10835  ipcnval  10837  cjmulval  10839  cjmulge0  10840  cjneg  10841  imval2  10845  cnrecnv  10861  recli  10862  recld  10889  cnreim  10929  abs00ap  11013  absrele  11034  releabs  11047  efeul  11684  absef  11719  absefib  11720  efieq1re  11721  abscxp  13588
  Copyright terms: Public domain W3C validator