| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > edg0iedg0g | GIF version | ||
| Description: There is no edge in a graph iff its edge function is empty. (Contributed by AV, 15-Dec-2020.) (Revised by AV, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| edg0iedg0.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| edg0iedg0.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| edg0iedg0g | ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐼) → (𝐸 = ∅ ↔ 𝐼 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edg0iedg0.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 2 | edgvalg 15654 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (Edg‘𝐺) = ran (iEdg‘𝐺)) | |
| 3 | 1, 2 | eqtrid 2250 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝐸 = ran (iEdg‘𝐺)) |
| 4 | 3 | eqeq1d 2214 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅)) |
| 5 | 4 | adantr 276 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐼) → (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅)) |
| 6 | edg0iedg0.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 7 | 6 | eqcomi 2209 | . . . . 5 ⊢ (iEdg‘𝐺) = 𝐼 |
| 8 | 7 | rneqi 4906 | . . . 4 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
| 9 | 8 | eqeq1i 2213 | . . 3 ⊢ (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅) |
| 10 | 9 | a1i 9 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐼) → (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅)) |
| 11 | funrel 5288 | . . . 4 ⊢ (Fun 𝐼 → Rel 𝐼) | |
| 12 | relrn0 4940 | . . . . 5 ⊢ (Rel 𝐼 → (𝐼 = ∅ ↔ ran 𝐼 = ∅)) | |
| 13 | 12 | bicomd 141 | . . . 4 ⊢ (Rel 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅)) |
| 14 | 11, 13 | syl 14 | . . 3 ⊢ (Fun 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅)) |
| 15 | 14 | adantl 277 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐼) → (ran 𝐼 = ∅ ↔ 𝐼 = ∅)) |
| 16 | 5, 10, 15 | 3bitrd 214 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐼) → (𝐸 = ∅ ↔ 𝐼 = ∅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 ∅c0 3460 ran crn 4676 Rel wrel 4680 Fun wfun 5265 ‘cfv 5271 iEdgciedg 15612 Edgcedg 15652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fo 5277 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-2nd 6227 df-sub 8245 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-9 9102 df-n0 9296 df-dec 9505 df-ndx 12835 df-slot 12836 df-edgf 15604 df-iedg 15614 df-edg 15653 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |