ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  edgfndxnn GIF version

Theorem edgfndxnn 15549
Description: The index value of the edge function extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 13-Oct-2024.)
Assertion
Ref Expression
edgfndxnn (.ef‘ndx) ∈ ℕ

Proof of Theorem edgfndxnn
StepHypRef Expression
1 edgfndx 15548 . 2 (.ef‘ndx) = 18
2 1nn0 9310 . . 3 1 ∈ ℕ0
3 8nn 9203 . . 3 8 ∈ ℕ
42, 3decnncl 9522 . 2 18 ∈ ℕ
51, 4eqeltri 2277 1 (.ef‘ndx) ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 2175  cfv 5270  1c1 7925  cn 9035  8c8 9092  cdc 9503  ndxcnx 12771  .efcedgf 15545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-sub 8244  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-9 9101  df-n0 9295  df-dec 9504  df-ndx 12777  df-slot 12778  df-edgf 15546
This theorem is referenced by:  edgfndxid  15550  iedgvalg  15558  edgfiedgval2dom  15574  funvtxvalg  15575  funiedgvalg  15576  structiedg0val  15579  structgr2slots2dom  15580  structgrssvtx  15581  structgrssiedg  15582  struct2grstrg  15583  struct2grvtx  15584
  Copyright terms: Public domain W3C validator