| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > edgfndxnn | GIF version | ||
| Description: The index value of the edge function extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 13-Oct-2024.) |
| Ref | Expression |
|---|---|
| edgfndxnn | ⊢ (.ef‘ndx) ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgfndx 15681 | . 2 ⊢ (.ef‘ndx) = ;18 | |
| 2 | 1nn0 9331 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 3 | 8nn 9224 | . . 3 ⊢ 8 ∈ ℕ | |
| 4 | 2, 3 | decnncl 9543 | . 2 ⊢ ;18 ∈ ℕ |
| 5 | 1, 4 | eqeltri 2279 | 1 ⊢ (.ef‘ndx) ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ‘cfv 5280 1c1 7946 ℕcn 9056 8c8 9113 ;cdc 9524 ndxcnx 12904 .efcedgf 15678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-sub 8265 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-n0 9316 df-dec 9525 df-ndx 12910 df-slot 12911 df-edgf 15679 |
| This theorem is referenced by: edgfndxid 15683 iedgvalg 15691 iedgex 15693 edgfiedgval2dom 15709 funvtxvalg 15710 funiedgvalg 15711 structiedg0val 15714 structgr2slots2dom 15715 structgrssvtx 15716 structgrssiedg 15717 struct2grstrg 15718 struct2grvtx 15719 iedgval0 15726 edgvalg 15731 edgstruct 15735 |
| Copyright terms: Public domain | W3C validator |