| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsvtx | GIF version | ||
| Description: The vertices of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 18-Jan-2020.) (Revised by AV, 16-Nov-2021.) |
| Ref | Expression |
|---|---|
| setsvtx.i | ⊢ 𝐼 = (.ef‘ndx) |
| setsvtx.s | ⊢ (𝜑 → 𝐺 Struct 𝑋) |
| setsvtx.b | ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) |
| setsvtx.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| setsvtx | ⊢ (𝜑 → (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (Base‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsvtx.s | . . . . 5 ⊢ (𝜑 → 𝐺 Struct 𝑋) | |
| 2 | structex 13052 | . . . . 5 ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
| 4 | setsvtx.i | . . . . . 6 ⊢ 𝐼 = (.ef‘ndx) | |
| 5 | edgfndxnn 15817 | . . . . . 6 ⊢ (.ef‘ndx) ∈ ℕ | |
| 6 | 4, 5 | eqeltri 2302 | . . . . 5 ⊢ 𝐼 ∈ ℕ |
| 7 | 6 | a1i 9 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ ℕ) |
| 8 | setsvtx.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
| 9 | setsex 13072 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐼 ∈ ℕ ∧ 𝐸 ∈ 𝑊) → (𝐺 sSet 〈𝐼, 𝐸〉) ∈ V) | |
| 10 | 3, 7, 8, 9 | syl3anc 1271 | . . 3 ⊢ (𝜑 → (𝐺 sSet 〈𝐼, 𝐸〉) ∈ V) |
| 11 | 1, 7, 8 | setsn0fun 13077 | . . 3 ⊢ (𝜑 → Fun ((𝐺 sSet 〈𝐼, 𝐸〉) ∖ {∅})) |
| 12 | 4 | eqcomi 2233 | . . . . 5 ⊢ (.ef‘ndx) = 𝐼 |
| 13 | 12 | preq2i 3747 | . . . 4 ⊢ {(Base‘ndx), (.ef‘ndx)} = {(Base‘ndx), 𝐼} |
| 14 | setsvtx.b | . . . . 5 ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) | |
| 15 | 1, 7, 8, 14 | bassetsnn 13097 | . . . 4 ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝐺 sSet 〈𝐼, 𝐸〉)) |
| 16 | 13, 15 | eqsstrid 3270 | . . 3 ⊢ (𝜑 → {(Base‘ndx), (.ef‘ndx)} ⊆ dom (𝐺 sSet 〈𝐼, 𝐸〉)) |
| 17 | funvtxvalg 15845 | . . 3 ⊢ (((𝐺 sSet 〈𝐼, 𝐸〉) ∈ V ∧ Fun ((𝐺 sSet 〈𝐼, 𝐸〉) ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom (𝐺 sSet 〈𝐼, 𝐸〉)) → (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (Base‘(𝐺 sSet 〈𝐼, 𝐸〉))) | |
| 18 | 10, 11, 16, 17 | syl3anc 1271 | . 2 ⊢ (𝜑 → (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (Base‘(𝐺 sSet 〈𝐼, 𝐸〉))) |
| 19 | baseslid 13098 | . . . 4 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 20 | basendxnedgfndx 15820 | . . . . 5 ⊢ (Base‘ndx) ≠ (.ef‘ndx) | |
| 21 | 20, 4 | neeqtrri 2429 | . . . 4 ⊢ (Base‘ndx) ≠ 𝐼 |
| 22 | 19, 21, 6 | setsslnid 13092 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐸 ∈ 𝑊) → (Base‘𝐺) = (Base‘(𝐺 sSet 〈𝐼, 𝐸〉))) |
| 23 | 3, 8, 22 | syl2anc 411 | . 2 ⊢ (𝜑 → (Base‘𝐺) = (Base‘(𝐺 sSet 〈𝐼, 𝐸〉))) |
| 24 | 18, 23 | eqtr4d 2265 | 1 ⊢ (𝜑 → (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (Base‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∖ cdif 3194 ⊆ wss 3197 ∅c0 3491 {csn 3666 {cpr 3667 〈cop 3669 class class class wbr 4083 dom cdm 4719 Fun wfun 5312 ‘cfv 5318 (class class class)co 6007 ℕcn 9118 Struct cstr 13036 ndxcnx 13037 sSet csts 13038 Basecbs 13040 .efcedgf 15813 Vtxcvtx 15821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-1o 6568 df-2o 6569 df-en 6896 df-dom 6897 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-edgf 15814 df-vtx 15823 |
| This theorem is referenced by: usgrstrrepeen 16037 |
| Copyright terms: Public domain | W3C validator |