ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasgrpf1 GIF version

Theorem imasgrpf1 13051
Description: The image of a group under an injection is a group. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
imasgrpf1.u 𝑈 = (𝐹s 𝑅)
imasgrpf1.v 𝑉 = (Base‘𝑅)
Assertion
Ref Expression
imasgrpf1 ((𝐹:𝑉1-1𝐵𝑅 ∈ Grp) → 𝑈 ∈ Grp)

Proof of Theorem imasgrpf1
Dummy variables 𝑎 𝑏 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasgrpf1.u . . . 4 𝑈 = (𝐹s 𝑅)
21a1i 9 . . 3 ((𝐹:𝑉1-1𝐵𝑅 ∈ Grp) → 𝑈 = (𝐹s 𝑅))
3 imasgrpf1.v . . . 4 𝑉 = (Base‘𝑅)
43a1i 9 . . 3 ((𝐹:𝑉1-1𝐵𝑅 ∈ Grp) → 𝑉 = (Base‘𝑅))
5 eqidd 2190 . . 3 ((𝐹:𝑉1-1𝐵𝑅 ∈ Grp) → (+g𝑅) = (+g𝑅))
6 f1f1orn 5491 . . . . 5 (𝐹:𝑉1-1𝐵𝐹:𝑉1-1-onto→ran 𝐹)
76adantr 276 . . . 4 ((𝐹:𝑉1-1𝐵𝑅 ∈ Grp) → 𝐹:𝑉1-1-onto→ran 𝐹)
8 f1ofo 5487 . . . 4 (𝐹:𝑉1-1-onto→ran 𝐹𝐹:𝑉onto→ran 𝐹)
97, 8syl 14 . . 3 ((𝐹:𝑉1-1𝐵𝑅 ∈ Grp) → 𝐹:𝑉onto→ran 𝐹)
107f1ocpbl 12785 . . 3 (((𝐹:𝑉1-1𝐵𝑅 ∈ Grp) ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑝(+g𝑅)𝑞))))
11 simpr 110 . . 3 ((𝐹:𝑉1-1𝐵𝑅 ∈ Grp) → 𝑅 ∈ Grp)
12 eqid 2189 . . 3 (0g𝑅) = (0g𝑅)
132, 4, 5, 9, 10, 11, 12imasgrp 13050 . 2 ((𝐹:𝑉1-1𝐵𝑅 ∈ Grp) → (𝑈 ∈ Grp ∧ (𝐹‘(0g𝑅)) = (0g𝑈)))
1413simpld 112 1 ((𝐹:𝑉1-1𝐵𝑅 ∈ Grp) → 𝑈 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  ran crn 4645  1-1wf1 5232  ontowfo 5233  1-1-ontowf1o 5234  cfv 5235  (class class class)co 5895  Basecbs 12511  +gcplusg 12586  0gc0g 12758  s cimas 12773  Grpcgrp 12942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-lttrn 7954  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-tp 3615  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-inn 8949  df-2 9007  df-3 9008  df-ndx 12514  df-slot 12515  df-base 12517  df-plusg 12599  df-mulr 12600  df-0g 12760  df-iimas 12776  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-minusg 12946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator