| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zlmlemg | GIF version | ||
| Description: Lemma for zlmbasg 14424 and zlmplusgg 14425. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.) |
| Ref | Expression |
|---|---|
| zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| zlmlem.2 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| zlmlem.nn | ⊢ (𝐸‘ndx) ∈ ℕ |
| zlmlem.3 | ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
| zlmlem.4 | ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) |
| Ref | Expression |
|---|---|
| zlmlemg | ⊢ (𝐺 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaslid 13018 | . . . . 5 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
| 2 | 1 | simpri 113 | . . . 4 ⊢ (Scalar‘ndx) ∈ ℕ |
| 3 | zringring 14388 | . . . 4 ⊢ ℤring ∈ Ring | |
| 4 | setsex 12897 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ (Scalar‘ndx) ∈ ℕ ∧ ℤring ∈ Ring) → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) | |
| 5 | 2, 3, 4 | mp3an23 1342 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) |
| 6 | mulgex 13492 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) | |
| 7 | zlmlem.2 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 8 | zlmlem.nn | . . . . 5 ⊢ (𝐸‘ndx) ∈ ℕ | |
| 9 | 7, 8 | ndxslid 12890 | . . . 4 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| 10 | zlmlem.4 | . . . 4 ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) | |
| 11 | vscaslid 13028 | . . . . 5 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 12 | 11 | simpri 113 | . . . 4 ⊢ ( ·𝑠 ‘ndx) ∈ ℕ |
| 13 | 9, 10, 12 | setsslnid 12917 | . . 3 ⊢ (((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V ∧ (.g‘𝐺) ∈ V) → (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
| 14 | 5, 6, 13 | syl2anc 411 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
| 15 | zlmlem.3 | . . . 4 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) | |
| 16 | 9, 15, 2 | setsslnid 12917 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ ℤring ∈ Ring) → (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉))) |
| 17 | 3, 16 | mpan2 425 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉))) |
| 18 | zlmbas.w | . . . 4 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 19 | eqid 2205 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 20 | 18, 19 | zlmval 14422 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
| 21 | 20 | fveq2d 5582 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝐸‘𝑊) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
| 22 | 14, 17, 21 | 3eqtr4d 2248 | 1 ⊢ (𝐺 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑊)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 ≠ wne 2376 Vcvv 2772 〈cop 3636 ‘cfv 5272 (class class class)co 5946 ℕcn 9038 ndxcnx 12862 sSet csts 12863 Slot cslot 12864 Scalarcsca 12945 ·𝑠 cvsca 12946 .gcmg 13488 Ringcrg 13791 ℤringczring 14385 ℤModczlm 14407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-addf 8049 ax-mulf 8050 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-tp 3641 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-5 9100 df-6 9101 df-7 9102 df-8 9103 df-9 9104 df-n0 9298 df-z 9375 df-dec 9507 df-uz 9651 df-rp 9778 df-fz 10133 df-seqfrec 10595 df-cj 11186 df-abs 11343 df-struct 12867 df-ndx 12868 df-slot 12869 df-base 12871 df-sets 12872 df-iress 12873 df-plusg 12955 df-mulr 12956 df-starv 12957 df-sca 12958 df-vsca 12959 df-tset 12961 df-ple 12962 df-ds 12964 df-unif 12965 df-0g 13123 df-topgen 13125 df-mgm 13221 df-sgrp 13267 df-mnd 13282 df-grp 13368 df-minusg 13369 df-mulg 13489 df-subg 13539 df-cmn 13655 df-mgp 13716 df-ur 13755 df-ring 13793 df-cring 13794 df-subrg 14014 df-bl 14341 df-mopn 14342 df-fg 14344 df-metu 14345 df-cnfld 14352 df-zring 14386 df-zlm 14410 |
| This theorem is referenced by: zlmbasg 14424 zlmplusgg 14425 zlmmulrg 14426 |
| Copyright terms: Public domain | W3C validator |