![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zlmlemg | GIF version |
Description: Lemma for zlmbasg 13874 and zlmplusgg 13875. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.) |
Ref | Expression |
---|---|
zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmlem.2 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
zlmlem.nn | ⊢ (𝐸‘ndx) ∈ ℕ |
zlmlem.3 | ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) |
zlmlem.4 | ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) |
Ref | Expression |
---|---|
zlmlemg | ⊢ (𝐺 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaslid 12629 | . . . . 5 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
2 | 1 | simpri 113 | . . . 4 ⊢ (Scalar‘ndx) ∈ ℕ |
3 | zringring 13852 | . . . 4 ⊢ ℤring ∈ Ring | |
4 | setsex 12511 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ (Scalar‘ndx) ∈ ℕ ∧ ℤring ∈ Ring) → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) | |
5 | 2, 3, 4 | mp3an23 1339 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) |
6 | mulgex 13030 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) | |
7 | zlmlem.2 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
8 | zlmlem.nn | . . . . 5 ⊢ (𝐸‘ndx) ∈ ℕ | |
9 | 7, 8 | ndxslid 12504 | . . . 4 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
10 | zlmlem.4 | . . . 4 ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) | |
11 | vscaslid 12639 | . . . . 5 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
12 | 11 | simpri 113 | . . . 4 ⊢ ( ·𝑠 ‘ndx) ∈ ℕ |
13 | 9, 10, 12 | setsslnid 12531 | . . 3 ⊢ (((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V ∧ (.g‘𝐺) ∈ V) → (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
14 | 5, 6, 13 | syl2anc 411 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
15 | zlmlem.3 | . . . 4 ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) | |
16 | 9, 15, 2 | setsslnid 12531 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ ℤring ∈ Ring) → (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉))) |
17 | 3, 16 | mpan2 425 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉))) |
18 | zlmbas.w | . . . 4 ⊢ 𝑊 = (ℤMod‘𝐺) | |
19 | eqid 2188 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
20 | 18, 19 | zlmval 13872 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
21 | 20 | fveq2d 5533 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝐸‘𝑊) = (𝐸‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
22 | 14, 17, 21 | 3eqtr4d 2231 | 1 ⊢ (𝐺 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑊)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2159 ≠ wne 2359 Vcvv 2751 〈cop 3609 ‘cfv 5230 (class class class)co 5890 ℕcn 8936 ndxcnx 12476 sSet csts 12477 Slot cslot 12478 Scalarcsca 12557 ·𝑠 cvsca 12558 .gcmg 13026 Ringcrg 13310 ℤringczring 13849 ℤModczlm 13867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-coll 4132 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-iinf 4601 ax-cnex 7919 ax-resscn 7920 ax-1cn 7921 ax-1re 7922 ax-icn 7923 ax-addcl 7924 ax-addrcl 7925 ax-mulcl 7926 ax-mulrcl 7927 ax-addcom 7928 ax-mulcom 7929 ax-addass 7930 ax-mulass 7931 ax-distr 7932 ax-i2m1 7933 ax-0lt1 7934 ax-1rid 7935 ax-0id 7936 ax-rnegex 7937 ax-precex 7938 ax-cnre 7939 ax-pre-ltirr 7940 ax-pre-ltwlin 7941 ax-pre-lttrn 7942 ax-pre-apti 7943 ax-pre-ltadd 7944 ax-pre-mulgt0 7945 ax-addf 7950 ax-mulf 7951 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-nel 2455 df-ral 2472 df-rex 2473 df-reu 2474 df-rmo 2475 df-rab 2476 df-v 2753 df-sbc 2977 df-csb 3072 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-nul 3437 df-if 3549 df-pw 3591 df-sn 3612 df-pr 3613 df-tp 3614 df-op 3615 df-uni 3824 df-int 3859 df-iun 3902 df-br 4018 df-opab 4079 df-mpt 4080 df-tr 4116 df-id 4307 df-iord 4380 df-on 4382 df-iom 4604 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-res 4652 df-ima 4653 df-iota 5192 df-fun 5232 df-fn 5233 df-f 5234 df-f1 5235 df-fo 5236 df-f1o 5237 df-fv 5238 df-riota 5846 df-ov 5893 df-oprab 5894 df-mpo 5895 df-1st 6158 df-2nd 6159 df-recs 6323 df-frec 6409 df-pnf 8011 df-mnf 8012 df-xr 8013 df-ltxr 8014 df-le 8015 df-sub 8147 df-neg 8148 df-reap 8549 df-inn 8937 df-2 8995 df-3 8996 df-4 8997 df-5 8998 df-6 8999 df-7 9000 df-8 9001 df-9 9002 df-n0 9194 df-z 9271 df-dec 9402 df-uz 9546 df-fz 10026 df-seqfrec 10463 df-cj 10868 df-struct 12481 df-ndx 12482 df-slot 12483 df-base 12485 df-sets 12486 df-iress 12487 df-plusg 12567 df-mulr 12568 df-starv 12569 df-sca 12570 df-vsca 12571 df-0g 12728 df-mgm 12797 df-sgrp 12830 df-mnd 12843 df-grp 12913 df-minusg 12914 df-mulg 13027 df-subg 13074 df-cmn 13185 df-mgp 13235 df-ur 13274 df-ring 13312 df-cring 13313 df-subrg 13526 df-icnfld 13825 df-zring 13850 df-zlm 13870 |
This theorem is referenced by: zlmbasg 13874 zlmplusgg 13875 zlmmulrg 13876 |
Copyright terms: Public domain | W3C validator |