| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zlmval | GIF version | ||
| Description: Augment an abelian group with vector space operations to turn it into a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmval.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| zlmval.m | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| zlmval | ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmval.w | . 2 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 2 | df-zlm 14295 | . . 3 ⊢ ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉)) | |
| 3 | oveq1 5941 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 sSet 〈(Scalar‘ndx), ℤring〉) = (𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) | |
| 4 | fveq2 5570 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = (.g‘𝐺)) | |
| 5 | zlmval.m | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 6 | 4, 5 | eqtr4di 2255 | . . . . 5 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = · ) |
| 7 | 6 | opeq2d 3825 | . . . 4 ⊢ (𝑔 = 𝐺 → 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉 = 〈( ·𝑠 ‘ndx), · 〉) |
| 8 | 3, 7 | oveq12d 5952 | . . 3 ⊢ (𝑔 = 𝐺 → ((𝑔 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉) = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| 9 | elex 2782 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
| 10 | scaslid 12903 | . . . . . 6 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
| 11 | 10 | simpri 113 | . . . . 5 ⊢ (Scalar‘ndx) ∈ ℕ |
| 12 | zringring 14273 | . . . . 5 ⊢ ℤring ∈ Ring | |
| 13 | setsex 12783 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ (Scalar‘ndx) ∈ ℕ ∧ ℤring ∈ Ring) → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) | |
| 14 | 11, 12, 13 | mp3an23 1341 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) |
| 15 | vscaslid 12913 | . . . . . 6 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 16 | 15 | simpri 113 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) ∈ ℕ |
| 17 | 16 | a1i 9 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → ( ·𝑠 ‘ndx) ∈ ℕ) |
| 18 | mulgex 13377 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) | |
| 19 | 5, 18 | eqeltrid 2291 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → · ∈ V) |
| 20 | setsex 12783 | . . . 4 ⊢ (((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V ∧ ( ·𝑠 ‘ndx) ∈ ℕ ∧ · ∈ V) → ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉) ∈ V) | |
| 21 | 14, 17, 19, 20 | syl3anc 1249 | . . 3 ⊢ (𝐺 ∈ 𝑉 → ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉) ∈ V) |
| 22 | 2, 8, 9, 21 | fvmptd3 5667 | . 2 ⊢ (𝐺 ∈ 𝑉 → (ℤMod‘𝐺) = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| 23 | 1, 22 | eqtrid 2249 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 〈cop 3635 ‘cfv 5268 (class class class)co 5934 ℕcn 9018 ndxcnx 12748 sSet csts 12749 Slot cslot 12750 Scalarcsca 12831 ·𝑠 cvsca 12832 .gcmg 13373 Ringcrg 13676 ℤringczring 14270 ℤModczlm 14292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-addf 8029 ax-mulf 8030 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-tp 3640 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-7 9082 df-8 9083 df-9 9084 df-n0 9278 df-z 9355 df-dec 9487 df-uz 9631 df-rp 9758 df-fz 10113 df-seqfrec 10574 df-cj 11072 df-abs 11229 df-struct 12753 df-ndx 12754 df-slot 12755 df-base 12757 df-sets 12758 df-iress 12759 df-plusg 12841 df-mulr 12842 df-starv 12843 df-sca 12844 df-vsca 12845 df-tset 12847 df-ple 12848 df-ds 12850 df-unif 12851 df-0g 13008 df-topgen 13010 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-grp 13253 df-minusg 13254 df-mulg 13374 df-subg 13424 df-cmn 13540 df-mgp 13601 df-ur 13640 df-ring 13678 df-cring 13679 df-subrg 13899 df-bl 14226 df-mopn 14227 df-fg 14229 df-metu 14230 df-cnfld 14237 df-zring 14271 df-zlm 14295 |
| This theorem is referenced by: zlmlemg 14308 zlmsca 14312 zlmvscag 14313 |
| Copyright terms: Public domain | W3C validator |