| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zlmval | GIF version | ||
| Description: Augment an abelian group with vector space operations to turn it into a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmval.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| zlmval.m | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| zlmval | ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmval.w | . 2 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 2 | df-zlm 14452 | . . 3 ⊢ ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉)) | |
| 3 | oveq1 5964 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 sSet 〈(Scalar‘ndx), ℤring〉) = (𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) | |
| 4 | fveq2 5589 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = (.g‘𝐺)) | |
| 5 | zlmval.m | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 6 | 4, 5 | eqtr4di 2257 | . . . . 5 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = · ) |
| 7 | 6 | opeq2d 3832 | . . . 4 ⊢ (𝑔 = 𝐺 → 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉 = 〈( ·𝑠 ‘ndx), · 〉) |
| 8 | 3, 7 | oveq12d 5975 | . . 3 ⊢ (𝑔 = 𝐺 → ((𝑔 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉) = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| 9 | elex 2785 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
| 10 | scaslid 13060 | . . . . . 6 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
| 11 | 10 | simpri 113 | . . . . 5 ⊢ (Scalar‘ndx) ∈ ℕ |
| 12 | zringring 14430 | . . . . 5 ⊢ ℤring ∈ Ring | |
| 13 | setsex 12939 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ (Scalar‘ndx) ∈ ℕ ∧ ℤring ∈ Ring) → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) | |
| 14 | 11, 12, 13 | mp3an23 1342 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) |
| 15 | vscaslid 13070 | . . . . . 6 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 16 | 15 | simpri 113 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) ∈ ℕ |
| 17 | 16 | a1i 9 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → ( ·𝑠 ‘ndx) ∈ ℕ) |
| 18 | mulgex 13534 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) | |
| 19 | 5, 18 | eqeltrid 2293 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → · ∈ V) |
| 20 | setsex 12939 | . . . 4 ⊢ (((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V ∧ ( ·𝑠 ‘ndx) ∈ ℕ ∧ · ∈ V) → ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉) ∈ V) | |
| 21 | 14, 17, 19, 20 | syl3anc 1250 | . . 3 ⊢ (𝐺 ∈ 𝑉 → ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉) ∈ V) |
| 22 | 2, 8, 9, 21 | fvmptd3 5686 | . 2 ⊢ (𝐺 ∈ 𝑉 → (ℤMod‘𝐺) = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| 23 | 1, 22 | eqtrid 2251 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 〈cop 3641 ‘cfv 5280 (class class class)co 5957 ℕcn 9056 ndxcnx 12904 sSet csts 12905 Slot cslot 12906 Scalarcsca 12987 ·𝑠 cvsca 12988 .gcmg 13530 Ringcrg 13833 ℤringczring 14427 ℤModczlm 14449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-addf 8067 ax-mulf 8068 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-tp 3646 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-n0 9316 df-z 9393 df-dec 9525 df-uz 9669 df-rp 9796 df-fz 10151 df-seqfrec 10615 df-cj 11228 df-abs 11385 df-struct 12909 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 df-plusg 12997 df-mulr 12998 df-starv 12999 df-sca 13000 df-vsca 13001 df-tset 13003 df-ple 13004 df-ds 13006 df-unif 13007 df-0g 13165 df-topgen 13167 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 df-mulg 13531 df-subg 13581 df-cmn 13697 df-mgp 13758 df-ur 13797 df-ring 13835 df-cring 13836 df-subrg 14056 df-bl 14383 df-mopn 14384 df-fg 14386 df-metu 14387 df-cnfld 14394 df-zring 14428 df-zlm 14452 |
| This theorem is referenced by: zlmlemg 14465 zlmsca 14469 zlmvscag 14470 |
| Copyright terms: Public domain | W3C validator |