| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zlmval | GIF version | ||
| Description: Augment an abelian group with vector space operations to turn it into a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmval.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| zlmval.m | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| zlmval | ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmval.w | . 2 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 2 | df-zlm 14573 | . . 3 ⊢ ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉)) | |
| 3 | oveq1 6007 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 sSet 〈(Scalar‘ndx), ℤring〉) = (𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) | |
| 4 | fveq2 5626 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = (.g‘𝐺)) | |
| 5 | zlmval.m | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 6 | 4, 5 | eqtr4di 2280 | . . . . 5 ⊢ (𝑔 = 𝐺 → (.g‘𝑔) = · ) |
| 7 | 6 | opeq2d 3863 | . . . 4 ⊢ (𝑔 = 𝐺 → 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉 = 〈( ·𝑠 ‘ndx), · 〉) |
| 8 | 3, 7 | oveq12d 6018 | . . 3 ⊢ (𝑔 = 𝐺 → ((𝑔 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉) = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| 9 | elex 2811 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
| 10 | scaslid 13181 | . . . . . 6 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
| 11 | 10 | simpri 113 | . . . . 5 ⊢ (Scalar‘ndx) ∈ ℕ |
| 12 | zringring 14551 | . . . . 5 ⊢ ℤring ∈ Ring | |
| 13 | setsex 13059 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ (Scalar‘ndx) ∈ ℕ ∧ ℤring ∈ Ring) → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) | |
| 14 | 11, 12, 13 | mp3an23 1363 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) |
| 15 | vscaslid 13191 | . . . . . 6 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 16 | 15 | simpri 113 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) ∈ ℕ |
| 17 | 16 | a1i 9 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → ( ·𝑠 ‘ndx) ∈ ℕ) |
| 18 | mulgex 13655 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) | |
| 19 | 5, 18 | eqeltrid 2316 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → · ∈ V) |
| 20 | setsex 13059 | . . . 4 ⊢ (((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V ∧ ( ·𝑠 ‘ndx) ∈ ℕ ∧ · ∈ V) → ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉) ∈ V) | |
| 21 | 14, 17, 19, 20 | syl3anc 1271 | . . 3 ⊢ (𝐺 ∈ 𝑉 → ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉) ∈ V) |
| 22 | 2, 8, 9, 21 | fvmptd3 5727 | . 2 ⊢ (𝐺 ∈ 𝑉 → (ℤMod‘𝐺) = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| 23 | 1, 22 | eqtrid 2274 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 〈cop 3669 ‘cfv 5317 (class class class)co 6000 ℕcn 9106 ndxcnx 13024 sSet csts 13025 Slot cslot 13026 Scalarcsca 13108 ·𝑠 cvsca 13109 .gcmg 13651 Ringcrg 13954 ℤringczring 14548 ℤModczlm 14570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-addf 8117 ax-mulf 8118 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-z 9443 df-dec 9575 df-uz 9719 df-rp 9846 df-fz 10201 df-seqfrec 10665 df-cj 11348 df-abs 11505 df-struct 13029 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-iress 13035 df-plusg 13118 df-mulr 13119 df-starv 13120 df-sca 13121 df-vsca 13122 df-tset 13124 df-ple 13125 df-ds 13127 df-unif 13128 df-0g 13286 df-topgen 13288 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 df-mulg 13652 df-subg 13702 df-cmn 13818 df-mgp 13879 df-ur 13918 df-ring 13956 df-cring 13957 df-subrg 14177 df-bl 14504 df-mopn 14505 df-fg 14507 df-metu 14508 df-cnfld 14515 df-zring 14549 df-zlm 14573 |
| This theorem is referenced by: zlmlemg 14586 zlmsca 14590 zlmvscag 14591 |
| Copyright terms: Public domain | W3C validator |