ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zlmval GIF version

Theorem zlmval 14115
Description: Augment an abelian group with vector space operations to turn it into a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
zlmval.w 𝑊 = (ℤMod‘𝐺)
zlmval.m · = (.g𝐺)
Assertion
Ref Expression
zlmval (𝐺𝑉𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))

Proof of Theorem zlmval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 zlmval.w . 2 𝑊 = (ℤMod‘𝐺)
2 df-zlm 14103 . . 3 ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝑔)⟩))
3 oveq1 5925 . . . 4 (𝑔 = 𝐺 → (𝑔 sSet ⟨(Scalar‘ndx), ℤring⟩) = (𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩))
4 fveq2 5554 . . . . . 6 (𝑔 = 𝐺 → (.g𝑔) = (.g𝐺))
5 zlmval.m . . . . . 6 · = (.g𝐺)
64, 5eqtr4di 2244 . . . . 5 (𝑔 = 𝐺 → (.g𝑔) = · )
76opeq2d 3811 . . . 4 (𝑔 = 𝐺 → ⟨( ·𝑠 ‘ndx), (.g𝑔)⟩ = ⟨( ·𝑠 ‘ndx), · ⟩)
83, 7oveq12d 5936 . . 3 (𝑔 = 𝐺 → ((𝑔 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝑔)⟩) = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
9 elex 2771 . . 3 (𝐺𝑉𝐺 ∈ V)
10 scaslid 12770 . . . . . 6 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
1110simpri 113 . . . . 5 (Scalar‘ndx) ∈ ℕ
12 zringring 14081 . . . . 5 ring ∈ Ring
13 setsex 12650 . . . . 5 ((𝐺𝑉 ∧ (Scalar‘ndx) ∈ ℕ ∧ ℤring ∈ Ring) → (𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) ∈ V)
1411, 12, 13mp3an23 1340 . . . 4 (𝐺𝑉 → (𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) ∈ V)
15 vscaslid 12780 . . . . . 6 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
1615simpri 113 . . . . 5 ( ·𝑠 ‘ndx) ∈ ℕ
1716a1i 9 . . . 4 (𝐺𝑉 → ( ·𝑠 ‘ndx) ∈ ℕ)
18 mulgex 13193 . . . . 5 (𝐺𝑉 → (.g𝐺) ∈ V)
195, 18eqeltrid 2280 . . . 4 (𝐺𝑉· ∈ V)
20 setsex 12650 . . . 4 (((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) ∈ V ∧ ( ·𝑠 ‘ndx) ∈ ℕ ∧ · ∈ V) → ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩) ∈ V)
2114, 17, 19, 20syl3anc 1249 . . 3 (𝐺𝑉 → ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩) ∈ V)
222, 8, 9, 21fvmptd3 5651 . 2 (𝐺𝑉 → (ℤMod‘𝐺) = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
231, 22eqtrid 2238 1 (𝐺𝑉𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  cop 3621  cfv 5254  (class class class)co 5918  cn 8982  ndxcnx 12615   sSet csts 12616  Slot cslot 12617  Scalarcsca 12698   ·𝑠 cvsca 12699  .gcmg 13189  Ringcrg 13492  ringczring 14078  ℤModczlm 14100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-dec 9449  df-uz 9593  df-fz 10075  df-seqfrec 10519  df-cj 10986  df-struct 12620  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-starv 12710  df-sca 12711  df-vsca 12712  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-mulg 13190  df-subg 13240  df-cmn 13356  df-mgp 13417  df-ur 13456  df-ring 13494  df-cring 13495  df-subrg 13715  df-icnfld 14048  df-zring 14079  df-zlm 14103
This theorem is referenced by:  zlmlemg  14116  zlmsca  14120  zlmvscag  14121
  Copyright terms: Public domain W3C validator