ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zlmval GIF version

Theorem zlmval 14261
Description: Augment an abelian group with vector space operations to turn it into a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
zlmval.w 𝑊 = (ℤMod‘𝐺)
zlmval.m · = (.g𝐺)
Assertion
Ref Expression
zlmval (𝐺𝑉𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))

Proof of Theorem zlmval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 zlmval.w . 2 𝑊 = (ℤMod‘𝐺)
2 df-zlm 14249 . . 3 ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝑔)⟩))
3 oveq1 5932 . . . 4 (𝑔 = 𝐺 → (𝑔 sSet ⟨(Scalar‘ndx), ℤring⟩) = (𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩))
4 fveq2 5561 . . . . . 6 (𝑔 = 𝐺 → (.g𝑔) = (.g𝐺))
5 zlmval.m . . . . . 6 · = (.g𝐺)
64, 5eqtr4di 2247 . . . . 5 (𝑔 = 𝐺 → (.g𝑔) = · )
76opeq2d 3816 . . . 4 (𝑔 = 𝐺 → ⟨( ·𝑠 ‘ndx), (.g𝑔)⟩ = ⟨( ·𝑠 ‘ndx), · ⟩)
83, 7oveq12d 5943 . . 3 (𝑔 = 𝐺 → ((𝑔 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝑔)⟩) = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
9 elex 2774 . . 3 (𝐺𝑉𝐺 ∈ V)
10 scaslid 12857 . . . . . 6 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
1110simpri 113 . . . . 5 (Scalar‘ndx) ∈ ℕ
12 zringring 14227 . . . . 5 ring ∈ Ring
13 setsex 12737 . . . . 5 ((𝐺𝑉 ∧ (Scalar‘ndx) ∈ ℕ ∧ ℤring ∈ Ring) → (𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) ∈ V)
1411, 12, 13mp3an23 1340 . . . 4 (𝐺𝑉 → (𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) ∈ V)
15 vscaslid 12867 . . . . . 6 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
1615simpri 113 . . . . 5 ( ·𝑠 ‘ndx) ∈ ℕ
1716a1i 9 . . . 4 (𝐺𝑉 → ( ·𝑠 ‘ndx) ∈ ℕ)
18 mulgex 13331 . . . . 5 (𝐺𝑉 → (.g𝐺) ∈ V)
195, 18eqeltrid 2283 . . . 4 (𝐺𝑉· ∈ V)
20 setsex 12737 . . . 4 (((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) ∈ V ∧ ( ·𝑠 ‘ndx) ∈ ℕ ∧ · ∈ V) → ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩) ∈ V)
2114, 17, 19, 20syl3anc 1249 . . 3 (𝐺𝑉 → ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩) ∈ V)
222, 8, 9, 21fvmptd3 5658 . 2 (𝐺𝑉 → (ℤMod‘𝐺) = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
231, 22eqtrid 2241 1 (𝐺𝑉𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  cop 3626  cfv 5259  (class class class)co 5925  cn 9009  ndxcnx 12702   sSet csts 12703  Slot cslot 12704  Scalarcsca 12785   ·𝑠 cvsca 12786  .gcmg 13327  Ringcrg 13630  ringczring 14224  ℤModczlm 14246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-addf 8020  ax-mulf 8021
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-dec 9477  df-uz 9621  df-rp 9748  df-fz 10103  df-seqfrec 10559  df-cj 11026  df-abs 11183  df-struct 12707  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-starv 12797  df-sca 12798  df-vsca 12799  df-tset 12801  df-ple 12802  df-ds 12804  df-unif 12805  df-0g 12962  df-topgen 12964  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-minusg 13208  df-mulg 13328  df-subg 13378  df-cmn 13494  df-mgp 13555  df-ur 13594  df-ring 13632  df-cring 13633  df-subrg 13853  df-bl 14180  df-mopn 14181  df-fg 14183  df-metu 14184  df-cnfld 14191  df-zring 14225  df-zlm 14249
This theorem is referenced by:  zlmlemg  14262  zlmsca  14266  zlmvscag  14267
  Copyright terms: Public domain W3C validator