| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zlmvscag | GIF version | ||
| Description: Scalar multiplication operation of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| zlmvsca.2 | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| zlmvscag | ⊢ (𝐺 ∈ 𝑉 → · = ( ·𝑠 ‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaslid 12985 | . . . . 5 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
| 2 | 1 | simpri 113 | . . . 4 ⊢ (Scalar‘ndx) ∈ ℕ |
| 3 | zringring 14355 | . . . 4 ⊢ ℤring ∈ Ring | |
| 4 | setsex 12864 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ (Scalar‘ndx) ∈ ℕ ∧ ℤring ∈ Ring) → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) | |
| 5 | 2, 3, 4 | mp3an23 1342 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V) |
| 6 | zlmvsca.2 | . . . 4 ⊢ · = (.g‘𝐺) | |
| 7 | mulgex 13459 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) | |
| 8 | 6, 7 | eqeltrid 2292 | . . 3 ⊢ (𝐺 ∈ 𝑉 → · ∈ V) |
| 9 | vscaslid 12995 | . . . 4 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 10 | 9 | setsslid 12883 | . . 3 ⊢ (((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V ∧ · ∈ V) → · = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉))) |
| 11 | 5, 8, 10 | syl2anc 411 | . 2 ⊢ (𝐺 ∈ 𝑉 → · = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉))) |
| 12 | zlmbas.w | . . . 4 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 13 | 12, 6 | zlmval 14389 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| 14 | 13 | fveq2d 5580 | . 2 ⊢ (𝐺 ∈ 𝑉 → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉))) |
| 15 | 11, 14 | eqtr4d 2241 | 1 ⊢ (𝐺 ∈ 𝑉 → · = ( ·𝑠 ‘𝑊)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 Vcvv 2772 〈cop 3636 ‘cfv 5271 (class class class)co 5944 ℕcn 9036 ndxcnx 12829 sSet csts 12830 Slot cslot 12831 Scalarcsca 12912 ·𝑠 cvsca 12913 .gcmg 13455 Ringcrg 13758 ℤringczring 14352 ℤModczlm 14374 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-addf 8047 ax-mulf 8048 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-tp 3641 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-9 9102 df-n0 9296 df-z 9373 df-dec 9505 df-uz 9649 df-rp 9776 df-fz 10131 df-seqfrec 10593 df-cj 11153 df-abs 11310 df-struct 12834 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-iress 12840 df-plusg 12922 df-mulr 12923 df-starv 12924 df-sca 12925 df-vsca 12926 df-tset 12928 df-ple 12929 df-ds 12931 df-unif 12932 df-0g 13090 df-topgen 13092 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-minusg 13336 df-mulg 13456 df-subg 13506 df-cmn 13622 df-mgp 13683 df-ur 13722 df-ring 13760 df-cring 13761 df-subrg 13981 df-bl 14308 df-mopn 14309 df-fg 14311 df-metu 14312 df-cnfld 14319 df-zring 14353 df-zlm 14377 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |